Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
We have demonstrated the installation of a fluorescence property into a nonfluorescent precursor and modulation of an emission response of a pyrene fluorophore via click reaction. The synthesized fluorophores show different solvatochromicity and/or intramolecular charge transfer (ICT) feature as is revealed from the UV-visible, fluorescence photophysical properties of these fluorophores, and DFT/TDDFT calculation. We observed that some of the synthesized fluorophores showed purely ICT character while emission from some of them arose from the LE state. A structureless and solvent polarity-sensitive dual emission behavior was observed for one of the triazolylpyrene fluorophores that contains an electron-donating -NMe(2) substituent (fluorophore, 7a). Conversely, triazolylpyrene with an electron-withdrawing -CN group (fluorophore, 7b) showed a solvent polarity-independent vibronic emission. The effect of ICT on the photophysical properties of these fluorophores was studied by fluorescence emission spectra and DFT/TDDFT calculations. Fluorescence lifetimes were also measured in different solvents. All of our findings revealed the delicate interplay of structure and emission properties and thus having broader general utility. As the CT to LE intensity ratio can be employed as a sensing index, the dual emissive fluorophore can be utilized in designing the molecular recognition system too. We envisage that our investigation is of importance for the development of new fluorophores with predetermined photophysical properties that may find a wide range of applications in chemistry, biology, and material sciences.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/jo200231k | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!