Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/adma.201004200 | DOI Listing |
Nat Commun
January 2025
Tsung-Dao Lee Institute & School of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai, China.
Unconventional superconductivity is known for its intertwining with other correlated states, making exploration of the intertwined orders important for understanding its pairing mechanism. In particular, spin and nematic orders are widely observed in iron-based superconductors; however, the presence of charge order is uncommon. Using scanning tunnelling microscopy, and through expanding the phase diagram of iron-arsenide superconductor BaKFeAs to the hole-doping regime beyond KFeAs by surface doping, we demonstrate the formation of a charge density wave (CDW) on the arsenide surface of heavily hole-doped BaKFeAs.
View Article and Find Full Text PDFFood Chem
December 2024
Hebei Key Laboratory of Applied Chemistry, Key Laboratory of Heavy Metal Deep-Remediation in Water and Resource Reuse, College of Environmental and Chemical Engineering, Yanshan University, Qinhuangdao 066004, China; Tianjin Key Laboratory of Multiplexed Identification for Port Hazardous Chemicals,State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science and Technology, Tianjin 300457, China. Electronic address:
Mater Horiz
December 2024
School of Electronic and Computer Engineering, Peking University, Shenzhen 518055, China.
The decoupling of electronic states between metals and semiconductors through controlled construction of artificial van der Waals (vdW) heterojunctions enables tailored Schottky barriers. However, the interfacial chemistry, especially involving solid-liquid interfaces, remains unexplored. Here, first principles calculations reveal unexpected strong Fermi-level pinning in various metal/MoS vdW heterojunctions with intercalated ice-like water bilayers.
View Article and Find Full Text PDFACS Nano
December 2024
IMDEA Nanoscience, C/Faraday 9, 28049 Madrid, Spain.
The existence of superconductivity (SC) appears to be established in both twisted and nontwisted graphene multilayers. However, whether their building block, single-layer graphene (SLG), can also host SC remains an open question. Earlier theoretical works predicted that SLG could become a chiral -wave superconductor driven by electronic interactions when doped to its van Hove singularity, but questions such as whether the -wave SC survives the strong band renormalizations seen in experiments, its robustness against the source of doping, or if it will occur at any reasonable critical temperature () have remained difficult to answer, in part due to uncertainties in model parameters.
View Article and Find Full Text PDFTalanta
December 2024
Department of Analytical Chemistry, Faculty of Natural Sciences, Comenius University in Bratislava, Mlynska dolina, Ilkovicova 6, 842 15, Bratislava, Slovakia; University of South Bohemia in Ceske Budejovice, Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Zatisi 728/II, CZ, 389 25, Vodnany, Czech Republic.
A three-electrode screen-printed sensor with heavily doped microcrystalline boron-doped diamond electrodes grown by chemical vapor deposition on alumina substrates was used to determine the concentration of melatonin by constant current potentiometric stripping analysis. This paper provides a detailed examination of the irreversible oxidation behavior of melatonin by cyclic voltammetry at a boron-doped diamond electrode. The relationship between the current response and the square root of the scan rate confirmed a diffusion-controlled oxidation process.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!