Cross-presentation is an important mechanism by which DCs present exogenous antigens on MHC-I molecules, and activate CD8(+) T cells, cells that are crucial for the elimination of tumors. We investigated the feasibility of exploiting the capacity of the mannose receptor (MR) to improve both cross-presentation of tumor antigens and Th polarization, processes that are pivotal for the anti-tumor potency of cytotoxic T cells. To this end, we selected two glycan ligands of the MR, 3-sulfo-Lewis(A) and tri-GlcNAc (N-acetylglucosamine), to conjugate to the model antigen OVA and assessed in vitro the effect on antigen presentation and Th differentiation. Our results demonstrate that conjugation of either 3-sulfo-Lewis(A) or tri-GlcNAc specifically directs antigen to the MR. Both neo-glycoconjugates showed, even at low doses, improved uptake as compared with native OVA, resulting in enhanced cross-presentation. Using MR(-/-) and MyD88-TRIFF(-/-) bone marrow-derived DCs (BMDCs), we show that the cross-presentation of the neo-glycoconjugates is dependent on MR and independent of TLR-mediated signaling. Whereas proliferation of antigen-specific CD4(+) T cells was unchanged, stimulation with neo-glycoconjugate-loaded DCs enhanced the generation of IFN-γ-producing T cells. We conclude that modification of antigen with either 3-sulfo-Lewis(A) or tri-GlcNAc enhances cross-presentation and permits Th1 skewing, through specific targeting of the MR, which may be beneficial for DC-based vaccination strategies to treat cancer.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/eji.201040762 | DOI Listing |
Eur J Immunol
April 2011
Department of Molecular Cell Biology and Immunology, VU University Medical Center, Amsterdam, The Netherlands.
Cross-presentation is an important mechanism by which DCs present exogenous antigens on MHC-I molecules, and activate CD8(+) T cells, cells that are crucial for the elimination of tumors. We investigated the feasibility of exploiting the capacity of the mannose receptor (MR) to improve both cross-presentation of tumor antigens and Th polarization, processes that are pivotal for the anti-tumor potency of cytotoxic T cells. To this end, we selected two glycan ligands of the MR, 3-sulfo-Lewis(A) and tri-GlcNAc (N-acetylglucosamine), to conjugate to the model antigen OVA and assessed in vitro the effect on antigen presentation and Th differentiation.
View Article and Find Full Text PDFInsect Biochem Mol Biol
February 2000
Department of Biochemistry, Kansas State University, Manhattan 66506, USA.
Knowledge-based protein modeling and substrate docking experiments as well as structural and sequence comparisons were performed to identify potential active-site residues in chitinase, a molting enzyme from the tobacco hornworm, Munduca sexta. We report here the identification of an active-site amino acid residue, W145. Several mutated forms of the gene encoding this protein were generated by site-directed mutagenesis, expressed in a baculovirus-insect cell-line system, and the corresponding mutant proteins were purified and characterized for their catalytic and substrate-binding properties.
View Article and Find Full Text PDFHuman LZM was found to enhance 3H-thy uptake and lymphoblast transformation in monocyte-depleted MLC. The effect was maximal (up to sixfold increase) in "low level" (less than 10,000 cpm) MLC. Maximal MLC enhancement was obtained with 250 micrograms/ml LZM; higher LZM concentrations appeared to be inhibitory.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!