Morphophysiological differences in leaves of Lavoisiera campos-portoana (Melastomataceae) enhance higher drought tolerance in water shortage events.

J Plant Res

Departamento de Botânica, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Av. Antônio Carlos, 6627, Pampulha, Belo Horizonte, MG, 31270-901, Brazil.

Published: January 2012

Lavoisiera campos-portoana Barreto (Melastomataceae) has two kinds of leaves, pubescent and glabrous, and branches may have one or both types of leaves at the same moment. The plant is endemic to high altitude rocky fields in Brazil where rainfall is very seasonal. We predicted that these two leaf types are adaptations to different regimes of water availability. In experimental conditions of drought stress, we measured relative water content (RWC), photosynthetic pigments, chlorophyll a fluorescence and osmotic potential, and we counted stomates and measured stomatal conductance on both sides of leaves and compared these between the two leaf types. Stomatal conductance and electron transport rate at a given photosynthetic photon flux were greater in pubescent leaves than in glabrous leaves, and both declined during drought stress. Excessive photon flux density in glabrous leaves was greater during stress and after rehydration. Photosynthetic pigment content and RWC did not change between leaves, and values reduced during the stress period. Both types of leaves showed osmotic adjustment capacity, which occurred earlier in glabrous ones. These morphophysiological differences highlight the adaptation strategies of this plant to withstand drought, since the glabrous portion of the plant presents a preventive behavior, while the pubescent portion only shows the same responses in more advanced stages of drought stress.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s10265-011-0416-zDOI Listing

Publication Analysis

Top Keywords

drought stress
12
leaves
9
morphophysiological differences
8
lavoisiera campos-portoana
8
types leaves
8
leaf types
8
content rwc
8
stomatal conductance
8
photon flux
8
glabrous leaves
8

Similar Publications

Maize drought protection by Azospirillum argentinense Az19 requires bacterial trehalose accumulation.

Appl Microbiol Biotechnol

December 2024

Facultad de Ciencias Agrarias, Universidad Nacional de Mar del Plata (UNMdP), Ruta Provincial 226 Km 73.5, B7620, Balcarce, Buenos Aires, Argentina.

Azospirillum argentinense Az19 is an osmotolerant plant growth-promoting bacterium that protects maize plants from drought. In this work, we explored the role of trehalose in the superior performance of Az19 under stress. The trehalase-coding gene treF was constitutively expressed in Az19 through a miniTn7 system.

View Article and Find Full Text PDF

The barley stripe mosaic virus (BSMV) uses its genomic RNA components (alpha, beta, and gamma) as an efficient method for studying gene functions. It is a newly developed method that utilizes gene transcript suppression to determine the role of plant genes. BSMV derived from virus induced gene silencing (VIGS) is capable of infecting various key farming crops like barley, wheat, rice, corn, and oats.

View Article and Find Full Text PDF

RNA plays important roles in the regulation of gene expression in response to environmental stimuli. , a long noncoding cis-natural antisense RNA, is a key component of regulating the response to cold temperature in . There are three mechanisms through which fine tunes the transcriptional response to cold temperatures.

View Article and Find Full Text PDF

Aflatoxin B1 Contamination Association with the Seed Coat Biochemical Marker Polyphenol in Peanuts Under Intermittent Drought.

J Fungi (Basel)

December 2024

Department of Agriculture, Agribusiness, and Environmental Sciences, Texas A&M University, 700 University Blvd, MSC 228, Kingsville, TX 78363, USA.

Aflatoxin B1 (AFB1) contamination (AC) increases as the severity of drought stress increases in peanuts. Identifying drought-tolerant (DT) genotypes with resistance to colonization and/or infection may aid in developing peanuts resistant to aflatoxin contamination in the semi-arid tropics. The goal of this study is to identify DT genotypes with seed coat biochemical resistance to infestation and aflatoxin contamination.

View Article and Find Full Text PDF

Under the increasing severity of drought issues and the urgent need for the resourceful utilization of agricultural waste, this study aimed to compare the soil water retention properties of hydrogels prepared from Chinese cabbage waste (CW) and banana peel (BP) using grafting techniques with acrylic acid (AA) and acrylamide (AAm). Free radical polymerization was initiated with ammonium persulfate (APS), and N, N'-methylene bisacrylamide (MBA) served as the crosslinking agent to fabricate the grafted polymer hydrogels. The hydrogels were subjected to detailed evaluations of their water absorption, reusability, and water retention capabilities through indoor experiments.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!