Purpose: Reactive oxygen species (ROS) are thought to contribute to the pathogenesis of necrotizing enterocolitis (NEC). Mitochondria as a major source of intracellular ROS and apoptotic signaling during oxidative stress in NEC have not been investigated. We sought to determine: (1) the effects of oxidative stress on intestinal mitochondrial apoptotic signaling, and (2) the role of growth factors in this process.

Methods: We used Swiss-Webster mice pups, and rat intestinal epithelial (RIE)-1, mitochondrial DNA-depleted RIE-1 cell line (RIE-1-ρ°) and human fetal intestinal epithelial cells (FHs74 Int) for our studies.

Results: H(2)O(2) induced apoptosis and ROS production. ROS-mediated activation of apoptotic signaling was significantly attenuated with mitochondrial silencing in RIE-1-ρ° cells. Growth factors, especially IGF-1, attenuated this response to H(2)O(2) in intestinal epithelial cells.

Conclusions: Our findings suggest that mitochondria are a major source of intestinal apoptotic signaling during oxidative stress, and modulating mitochondrial apoptotic responses may help ameliorate the effects of NEC.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3668660PMC
http://dx.doi.org/10.1007/s00383-011-2880-xDOI Listing

Publication Analysis

Top Keywords

apoptotic signaling
20
oxidative stress
16
mitochondrial apoptotic
12
intestinal epithelial
12
intestinal mitochondrial
8
mitochondria major
8
major source
8
signaling oxidative
8
growth factors
8
intestinal
6

Similar Publications

The CDKN2A gene, responsible for encoding the tumor suppressors p16(INK4A) and p14(ARF), is frequently inactivated in non-small cell lung cancer (NSCLC). Herein, an uncharacterized long non-coding RNA (lncRNA) (ENSG00000267053) on chromosome 19p13.12 was found to be overexpressed in NSCLC cells with an active, wild-type CDKN2A gene.

View Article and Find Full Text PDF

Introduction: Hypoxia, a condition characterized by inadequate oxygen supply to tissues, triggers various cellular responses, including apoptosis. The RNA demethylase FTO has been shown to exert anti-apoptotic effects, but its functions independent of RNA demethylase-particularly those involving protein-protein interactions-during hypoxia remain unclear.

Objectives: This study aimed to elucidate the cytoprotective mechanism of FTO in preventing apoptosis under hypoxic stress.

View Article and Find Full Text PDF

IGF1 enhances memory function in obese mice and stabilizes the neural structure under insulin resistance via AKT-GSK3β-BDNF signaling.

Biomed Pharmacother

January 2025

Department of Anatomy, Chonnam National University Medical School, Hwasun 58128, Republic of Korea; Biomedical Science Graduate Program (BMSGP), Chonnam National University, Hwasun 58128, Republic of Korea. Electronic address:

Obesity is a prevalent metabolic disorder linked to insulin resistance, hyperglycemia, increased adiposity, chronic inflammation, and cognitive dysfunction. Recent research has focused on developing therapeutic strategies to mitigate cognitive impairment associated with obesity. Insulin growth factor-1 (IGF1) deficiency is linked to insulin resistance, glucose intolerance, and the progression of obesity-related central nervous system (CNS) disorders.

View Article and Find Full Text PDF

Coumarins, a group of naturally occurring compounds, have been reported to demonstrate anticancer potential. These substances, distinguished by their combined benzene and α-pyrone rings, have been demonstrated to impact multiple cellular mechanisms essential for the initiation and advancement of cancer. These agents work in different ways that prevent different tumor cells from growing, spreading, and increasing.

View Article and Find Full Text PDF

Potential biomarkers for MCL1 inhibitor sensitivity.

Cell Signal (Middlet)

January 2024

Department of Anatomy and Cell Biology, Rush University Medical Center, Chicago, IL 60612, USA.

MCL1 is an anti-apoptotic member of the BCL2 protein family, and its overexpression is associated with poor prognosis across various cancers. Small molecule inhibitors targeting MCL1 are currently in clinical trials for TNBC and other malignancies. However, one major challenge in the clinical application of MCL1 inhibitors is the inherent or acquired resistance to these drugs.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!