Professional APCs, such as dendritic cells, are routinely used in vitro for the generation of cytotoxic T lymphocytes specific for tumor antigens. In addition to dendritic cells, CD40-activated B cells and variant K562 leukemic cells can be readily transfected with nucleic acids for in vitro and in vivo antigen presentation. However, the expression of immunoproteasome components in dendritic cells may preclude display of tumor antigens such as Mart1/MelanA. Here, we use three target epitopes, two derived from tumor antigens [Mart1(26-34) (M26) and Cyp1B1(239-247) (Cyp239)] and one derived from the influenza A viral antigen [FluM1(58-66) (FluM58)], to demonstrate that CD40-activated B cells, like dendritic cells, have a limited capability to process certain tumor antigens. In contrast, the K562 HLA-A*0201 transfectant efficiently processes and presents M26 and Cyp239 as well as the influenza FluM58 epitopes to T cells. These results demonstrate that the choice of target APC for gene transfer of tumor antigens may be limited by the relative efficacy of proteasome components to process certain tumor epitopes. Importantly, K562 can be exploited as an artificial APC, efficient in processing both M26 and Cyp239 epitopes and presumably, by extension, other relevant tumor antigens.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3547125PMC
http://dx.doi.org/10.1007/s00262-011-0995-5DOI Listing

Publication Analysis

Top Keywords

tumor antigens
24
dendritic cells
20
cd40-activated cells
12
cells
10
cells dendritic
8
process tumor
8
m26 cyp239
8
tumor
7
antigens
6
dendritic
5

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!