Purpose: The aim was to develop a high-throughput screening method compatible with low protein concentrations, as present in vaccines, in order to evaluate the performance of various excipients in preventing the aggregation at air-liquid interface of an experimental recombinant antigen called Antigen 18A.
Methods: Aggregation of Antigen 18A was triggered by shaking in a half-filled vial or by air bubbling in a microplate. Size-exclusion chromatography, turbidimetry, Nile Red fluorescence spectroscopy, and attenuated total reflection Fourier-transform infrared spectroscopy were used to assess Antigen 18A aggregation. A high-throughput method, based on tryptophan fluorescence spectroscopy, was set up to screen excipients for their capability to prevent Antigen 18A aggregation at air-liquid interface.
Results: While a similar aggregation profile was obtained with both stress tests when using size-exclusion chromatography, spectroscopic and turbidimetric methods showed an influence of the stress protocol on the nature of the aggregates. The high-throughput screening revealed that 7 out of 44 excipients significantly prevented Antigen 18A from aggregating. We confirmed the performance of hydroxypropyl-β-cyclodextrin and hydroxypropyl-γ-cyclodextrin, as well as poloxamers 188 and 407, in half-filled shaken vials.
Conclusions: A high-throughput screening approach can be followed for evaluating the performance of excipients against aggregation of a protein antigen at air-liquid interface.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s11095-011-0393-x | DOI Listing |
JACS Au
December 2024
Medicinal Chemistry, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria 3052, Australia.
High-throughput screening (HTS) is a crucial technique for identifying potential hits to fuel drug discovery pipelines. However, this process naturally concentrates nuisance compounds that are not optimizable yet signal positively in a convincing manner. To be able to understand what types of nuisance compounds a particular assay is sensitive to, would be of great utility in being able to prioritize progressable over nonprogressable screening hits.
View Article and Find Full Text PDFBiomater Res
December 2024
Department of Molecular Science and Technology, Ajou University, Suwon 16499, South Korea.
Hair follicle cells reside within a complex extracellular matrix (ECM) environment in vivo, where physical and chemical cues regulate their behavior. The ECM is crucial for hair follicle development and regeneration, particularly through epithelial-mesenchymal interactions. Current in vitro models often fail to replicate this complexity, leading to inconsistencies in evaluating hair loss treatments.
View Article and Find Full Text PDFAnal Chem
December 2024
First Affiliated Hospital, College of Integrative Medicine, College of Pharmacy, Dalian Medical University, Dalian 116044, China.
Dipeptidyl peptidase IV (DPPIV, EC 3.4.14.
View Article and Find Full Text PDFSci Rep
December 2024
University of Health Sciences, Vietnam National University Ho Chi Minh City, YA1 Administrative Building, Hai Thuong Lan Ong Street, Dong Hoa Ward, Di An City, Binh Duong Province, 75308, Vietnam.
Oxidative stress, characterized by the damaging accumulation of free radicals, is associated with various diseases, including cardiovascular, neurodegenerative, and metabolic disorders. The transcription factor Nrf2 is pivotal in cellular defense against oxidative stress by regulating genes that detoxify free radicals, thus maintaining redox homeostasis and preventing cellular aging. Keap1 plays a regulatory role through its interaction with Nrf2, ensuring Nrf2 degradation under homeostatic conditions and facilitating its stabilization and nuclear translocation during oxidative stress.
View Article and Find Full Text PDFActa Trop
December 2024
Key Laboratory of Diarrhea Disease Detection, Zhuhai International Travel Healthcare Center, Zhuhai 519020, Guangdong, PR China. Electronic address:
In the current study, the analytical sensitivity, analytical specificity, reproducibility, anti-interferences ability, and clinical performance of the QIAstat-Dx Gastrointestinal Panel (GIP) system were evaluated using pooled stool samples. Results showed that the pooled sample test detected the selected ten targets exclusively, with no cross reaction with any other targets of common enteropathogens. The analytical sensitivity of the pooled sample test on QIAstat-Dx GIP system was 10 CFU/ml for Shigella spp.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!