This paper presents the results of the study of electronic excitations in undoped LiBaAlF(6) single crystals by means of luminescence spectroscopy and complimentary optical methods. The intrinsic emission at 4.2 eV due to self-trapped excitons was identified. The fast nanosecond defect-related luminescence was revealed at 3.0 eV. Both emissions degrade under electron beam irradiation, the most probable reason of which is defect creation introducing an additional non-radiative relaxation channel prohibiting energy transfer to luminescence centers. These defects can be recovered and luminescence intensity restored at higher temperatures (>200 K). The permanent damage by electron beam irradiation results only in overall growth of the absorption coefficient in the whole 1.5-6.5 eV spectral region studied. The analysis of thermally stimulated luminescence glow curves in the temperature range of 5-410 K revealed two shallow charge carrier traps with the activation energies of 0.22 and 0.33 eV, respectively. The luminescence of an impurity peaked at 2.5 eV was found and tentatively assigned to an oxygen-related emission center.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1088/0953-8984/22/29/295504 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!