Here we present a parametrized tight-binding (TB) model to calculate the band structure of single-wall carbon nanotubes (SWNTs). On the basis of ab initio calculations we fit the band structure of nanotubes of different radii with results obtained with an orthogonal TB model to third neighbors, which includes the effects of orbital hybridization by means of a reduced set of parameters. The functional form for the dependence of these parameters on the radius of the tubes can be used to interpolate appropriate TB parameters for different SWNTs and to study the effects of curvature on their electronic properties. Additionally, we have shown that the model gives an appropriate description of the optical spectra of SWNTs, which can be useful for a proper assignation of SWNTs' specific chirality from optical absorption experiments.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1088/0953-8984/22/27/275503 | DOI Listing |
Nano Lett
January 2025
Donostia International Physics Center (DIPC), E-20018 Donostia-San Sebastián, Spain.
Nanoporous graphene (NPG), laterally bonded carbon nanoribbons, is a promising platform for controlling coherent electron propagation in the nanoscale. However, for its successful device integration NPG should ideally be on a substrate that preserves or enhances its anisotropic transport properties. Here, using an atomistic tight-binding model combined with nonequilibrium Green's functions, we study NPG on graphene and show that their electronic coupling is modulated as a function of the interlayer twist angle.
View Article and Find Full Text PDFNat Commun
January 2025
Key Laboratory of Automobile Materials, Ministry of Education, Department of Materials Science and Engineering, Jilin University, 130022, Changchun, China.
Correlating the bond strength with the macro strength of metals is crucial for understanding mechanical properties and designing multi-principal-element alloys (MPEAs). Motivated by the role of grain boundaries in the strength of metals, we introduce a predictive model to determine the grain-boundary energies and strength of metals from the cohesive energy and atomic radius. This scheme originates from the d-band characteristics and broken-bond spirit of tight-binding models, and demonstrates that the repulsive/attractive effects play different roles in the variation of bond strength for different metals.
View Article and Find Full Text PDFPhys Chem Chem Phys
January 2025
Department of Physics, Institute for Sustainable Energy and Environment, Virginia Commonwealth University, Richmond, VA, 23284, USA.
We propose a new stable three-dimensional (3D) porous and metallic boron nitride anode material, named h-BN, with good ductility for sodium-ion batteries (SIBs). Based on first-principles calculations and a tight-binding model, we demonstrate that the metallicity originates from the synergistic contribution of the p-orbital of the sp-hybridized B and N atoms, while the ductility is due to the unique configurations of B-B and N-N dimers in the structure. More importantly, this boron nitride allotrope exhibits a high reversible capacity of 582.
View Article and Find Full Text PDFSensors (Basel)
December 2024
Nikolaev Institute of Inorganic Chemistry SB RAS, 3 Lavrentiev Pr., 630090 Novosibirsk, Russia.
This paper presents the results of quantum-chemical modeling performed by the Density Functional-Based Tight Binding (DFTB) method to investigate the change in the band structure of hybrid materials based on carbon nanotubes and unsubstituted, tetra-, or octa-halogen-substituted zinc phthalocyanines upon the adsorption of ammonia molecules. The study showed that the electrical conductivity of these materials and its changes in the case of interaction with ammonia molecules depend on the position of the impurity band formed by the orbitals of macrocycle atoms relative to the forbidden energy gap of the hybrids. The sensor response of the hybrids containing halogenated phthalocyanines was lower by one or two orders of magnitude, depending on the number of substituents, compared to the hybrid with unsubstituted zinc phthalocyanine.
View Article and Find Full Text PDFJ Biol Chem
January 2025
Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, Tennessee 37232-0146, United States. Electronic address:
Cytochrome P450 (P450) 4A11 is a human P450 family 4 ω-oxidase that selectively catalyzes the hydroxylation of the terminal methyl group of fatty acids. Cytosolic lipids are the substrates for the enzyme but are considered to be primarily bound in cells by liver fatty acid binding protein (FABP1). Lipid binding to recombinant FABP1 with a fluorophore displacement assay showed substantial preference of FABP1 for ≥16-carbon fatty acids (K < 70 nM).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!