Sphingoid bases are cytotoxic for many cancer cell lines and are thought to contribute to suppression of intestinal tumorigenesis in vivo by ingested sphingolipids. This study explored the behavior of a sphingoid base analogue, (2S,3S,5S)-2-amino-3,5-dihydroxyoctadecane (Enigmol), that cannot be phosphorylated by sphingosine kinases and is slowly N-acylated and therefore is more persistent than natural sphingoid bases. Enigmol had potential anticancer activity in a National Cancer Institute (NCI-60) cell line screen and was confirmed to be more cytotoxic and persistent than naturally occurring sphingoid bases using HT29 cells, a colon cancer cell line. Although the molecular targets of sphingoid bases are not well delineated, Enigmol shared one of the mechanisms that has been found for naturally occurring sphingoid bases: normalization of the aberrant accumulation of β-catenin in the nucleus and cytoplasm of colon cancer cells due to defect(s) in the adenomatous polyposis coli (APC)/β-catenin regulatory system. Enigmol also had antitumor efficacy when administered orally to Min mice, a mouse model with a truncated APC gene product (C57Bl/6J(Min/+) mice), decreasing the number of intestinal tumors by half at 0.025% of the diet (w/w), with no evidence of host toxicity until higher dosages. Enigmol was also tested against the prostate cancer cell lines DU145 and PC-3 in nude mouse xenografts and suppressed tumor growth in both. Thus, Enigmol represents a novel category of sphingoid base analogue that is orally bioavailable and has the potential to be effective against multiple types of cancer.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5536251 | PMC |
http://dx.doi.org/10.1158/1535-7163.MCT-10-0754 | DOI Listing |
Cell Rep
December 2024
Department of Biochemistry, Virginia Commonwealth University, Richmond, VA 23298, USA. Electronic address:
SPTLC3, an inducible subunit of the serine palmitoyltransferase (SPT) complex, causes production of alternative sphingoid bases, including a 16-carbon dihydrosphingosine, whose biological function is only beginning to emerge. High-fat feeding induced SPTLC3 in the liver, prompting us to produce a liver-specific knockout mouse line. Following high-fat feeding, knockout mice showed decreased fasting blood glucose, and knockout primary hepatocytes showed suppressed glucose production, a core function of hepatocytes.
View Article and Find Full Text PDFMetab Eng
January 2025
Department of Life Science, Chung-Ang University, Seoul, 06974, South Korea. Electronic address:
Sphingolipids are vital membrane components in in mammalian cells, plants, and various microbes. We aimed to explore and exploit the sphingolipid biosynthesis pathways in an oleaginous and dimorphic yeast Yarrowia lipolytica by constructing and characterizing mutant strains with specific gene deletions and integrating exogenous genes to enhance the production of long-chain bases (LCBs) and glucosylceramides (GlcCers). To block the fungal/plant-specific phytosphingosine (PHS) pathway, we deleted the SUR2 gene encoding a sphinganine C4-hydroxylase, resulting in a remarkably elevated secretory production of dihydrosphingosine (DHS) and sphingosine (So) without acetylation.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
December 2024
Chemical Biology of Microbe-Host Interactions, Leibniz Institute for Natural Product Research and Infection Biology, Hans-Knöll Institute (Leibniz-HKI), Beutenbergstraße 11a, 07745, Jena, Germany.
Sphingoid bases are important bioactive lipids found in a variety of organisms, serving as the backbone of sphingolipids, which regulate essential physiological processes. Here we describe the total synthesis and structure revision of halisphingosine A, a sphingoid base initially isolated from marine sponges. To address inconsistencies in the NMR interpretation of this natural product, we developed a synthetic route involving a late-stage enantioselective Henry reaction that allows access to multiple stereoisomers of the proposed halisphingosine A core structure.
View Article and Find Full Text PDFNeurobiol Dis
November 2024
Institute of Genetics and Biophysics "Adriano Buzzati-Traverso", National Research Council, Naples, Italy; IRCCS INM Neuromed, Pozzilli, IS, Italy. Electronic address:
bioRxiv
September 2024
Department of Microbiology and Molecular Genetics, Larner College of Medicine, University of Vermont.
Sphingoid bases, including sphingosine, are important components of the antimicrobial barrier at epithelial surfaces where they can cause growth inhibition and killing of susceptible bacteria. is a common opportunistic pathogen that is less susceptible to sphingosine than many Gram-negative bacteria. Here, we determined that deletion of the operon reduced growth in the presence of sphingosine.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!