Striatal energetic homeostasis under anaesthetic conditions.

Brain Res

Department of Neurology, University of South Alabama, Mobile, AL 36688, USA.

Published: May 2011

The effects of anesthetics on central energetic metabolism remain poorly documented. In this study, the authors have investigated changes in energetic metabolism in the rat striatum following the systemic administration of either pentobarbital or ketamine. Changes in subcortical energetic homeostasis were compared to those in peripheral adipocyte tissue and correlated to both EEG and vital parameters (heart period, respiratory period, body temperature, glycemia). Pentobarbital induced a decrease in glucose utilisation in the striatum and peripheral tissue. Both EEG activities and vital functions were drastically affected by this treatment. Interestingly, energetics were depleted in the peripheral adipose tissue but not in the striatum. Ketamine, which increased low frequencies in EEG activities and sustained vital functions, increased glucose utilisation in the striatum. Our data, obtained in vivo, established that striatal changes in energetics following anaesthesia are drug-specific and rely on tissue-specific mechanisms. In the subcortical nucleus, energetic response to anaesthetics appears to be affected by changes in both cortical activities and autonomic status. In regard to the peri-operative treatments administrated to patients, our study stresses the importance of the choice of drug anaesthetics in order to avoid adverse effects on brain energetic homeostasis.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.brainres.2011.03.012DOI Listing

Publication Analysis

Top Keywords

energetic homeostasis
12
energetic metabolism
8
glucose utilisation
8
utilisation striatum
8
eeg activities
8
vital functions
8
energetic
5
striatal energetic
4
homeostasis anaesthetic
4
anaesthetic conditions
4

Similar Publications

The liver is an indispensable metabolic organ, responsible for accumulating and transporting various nutritional compounds in hepatocytes. However, the transport of these materials from the liver is an energetically intensive task because they contain a considerable number of hydrophobic components, including free cholesterol, and require specialized transfer proteins to shuttle these substances through an aqueous phase. Liver X receptors (LXRs) induce the expression of cholesterol transporters in macrophages to transport free cholesterol derived from apoptotic cells into extracellular space via high-density lipoproteins.

View Article and Find Full Text PDF

Exploring neutrophils as therapeutic targets in cardiometabolic diseases.

Trends Pharmacol Sci

January 2025

Department of Pharmacological and Biomolecular Sciences 'Rodolfo Paoletti', Università degli Studi di Milano, Milan, Italy. Electronic address:

Current therapies for diabetes and atherosclerotic cardiovascular diseases (ACVDs) mainly target metabolic risk factors, but often fall short in addressing systemic inflammation, a key driver of disease onset and progression. Advances in our understanding of the biology of neutrophils, the cells that are principally involved in inflammatory situations, have highlighted their pivotal role in cardiometabolic diseases. Yet, neutrophils can reprogram their immune-metabolic functions based on the energetic substrates available, thus influencing both tissue homeostasis and the resolution of inflammation.

View Article and Find Full Text PDF

Objective: Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disease characterized by significant heterogeneity among patients. 23Na MRI maps abnormal sodium homeostasis that reflects metabolic alterations and energetic failure contributing to the neurodegenerative process. In this study, we investigated disease severity at the individual level in ALS patients using brain 23Na MRI.

View Article and Find Full Text PDF

Objective: Obesity and overweight are associated with low-grade inflammation induced by adipose tissue expansion and perpetuated by altered intestinal homeostasis, including increased epithelial permeability. Intestinal epithelium functions are supported by intestinal epithelial cells (IEC) mitochondria function. However, diet-induced obesity (DIO) may impair mitochondrial activity of IEC and consequently, intestinal homeostasis.

View Article and Find Full Text PDF

Because hummingbirds are small and have an expensive mode of locomotion, they have constrained energy budgets. Torpor is used to buffer against these energetic challenges, but its frequency and duration vary. We measured lipid content, metabolic rates and torpor use in two species of migrating hummingbirds, calliope () and rufous hummingbirds () at a stopover site.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!