UCS proteins, such as UNC-45, influence muscle contraction and other myosin-dependent motile processes. We report the first X-ray crystal structure of a UCS domain-containing protein, the UNC-45 myosin chaperone from Drosophila melanogaster (DmUNC-45). The structure reveals that the central and UCS domains form a contiguous arrangement of 17 consecutive helical layers that arrange themselves into five discrete armadillo repeat subdomains. Small-angle X-ray scattering data suggest that free DmUNC-45 adopts an elongated conformation and exhibits flexibility in solution. Protease sensitivity maps to a conserved loop that contacts the most carboxy-terminal UNC-45 armadillo repeat subdomain. Amino acid conservation across diverse UCS proteins maps to one face of this carboxy-terminal subdomain, and the majority of mutations that affect myosin-dependent cellular activities lie within or around this region. Our crystallographic, biophysical, and biochemical analyses suggest that DmUNC-45 function is afforded by its flexibility and by structural integrity of its UCS domain.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3060410 | PMC |
http://dx.doi.org/10.1016/j.str.2011.01.002 | DOI Listing |
Discov Nano
January 2025
Instituto de Ciencia de Materiales de Madrid, CSIC, Cantoblanco, 28049, Madrid, Spain.
Chemically tuned organic-inorganic hybrid halide perovskites based on bromide and chloride anions CH(NH)Pb(BrCl) (CH(NH): formamidinium ion, FA) have been crystallized and investigated by neutron powder diffraction (NPD), single crystal X-ray diffraction (SCXRD), scanning electron microscopy (SEM) and UV-vis spectroscopy. FAPbBr and FAPbCl experience successive phase transitions upon cooling, lowering the symmetry from cubic to orthorhombic phases; however, these transitions are not observed for the mixed halide phases, probably due to compositional disorder. The band-gap engineering brought about by the chemical doping of FAPb (BrCl) perovskites (x = 0.
View Article and Find Full Text PDFMol Pharm
January 2025
Department of Industrial and Molecular Pharmaceutics, College of Pharmacy, Purdue University, 575 Stadium Mall Drive, West Lafayette, Indiana 47907, United States.
Lumefantrine (LMF) is a low-solubility antimalarial drug that cures acute, uncomplicated malaria. It exerts its pharmacological effects against erythrocytic stages of spp. and prevents malaria pathogens from producing nucleic acid and protein, thereby eliminating the parasites.
View Article and Find Full Text PDFJ Orthop Case Rep
January 2025
Department of Orthopaedics, ACS Medical College and Hospital, Dr. MGR Educational and Research Institute, Chennai, Tamil Nadu, India.
Introduction: Calcific tendonitis is characterized by calcium hydroxyapatite crystal deposition in tendons, leading to inflammation and pain. While predominantly observed in the rotator cuff tendons of the shoulder, its occurrence in the rectus femoris tendon of the hip is exceedingly rare and poses a diagnostic challenge.
Case Report: A 38-year-old female housewife presented with a 1-month history of left hip pain, which was dull, aching, and exacerbated by movements such as standing and walking.
Microscopy (Oxf)
January 2025
Department of Materials Physics, Graduate School of Engineering, Nagoya University, Chikusa-ku, Nagoya 464-8603, Japan.
The distribution of dopants in host crystals significantly influences the chemical and electronic properties of materials. Therefore, determining this distribution is crucial for optimizing material performance. The previously developed statistical ALCHEMI (St-ALCHEMI), an extension of the atom-location by channeling-enhanced microanalysis (ALCHEMI) technique, utilizes variations in electron channeling based on the beam direction relative to the crystal orientation.
View Article and Find Full Text PDFJ Colloid Interface Sci
January 2025
State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun 130012, PR China. Electronic address:
Vanadium dioxide (VO) has attracted significant attention in aqueous zinc ion batteries (AZIBs) owing to their desirable theoretical specific capacity originated from multiple electrons transfer reaction and special crystal structure. However, sluggish electrochemical kinetics leads to inferior electrochemical storage performance. Herein, rich vanadium vacancies were introduced in tunnel VO to boost Zn diffusion, increasing charge storage capacity and lengthen lifespan.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!