Specific Se-metabolites have been recognized to be the main elements responsible for beneficial effects of Se-enriched diet, and Se-methylselenocysteine (SeMCys) is thought to be among the most effective ones. Here we show that an engineered Saccharomyces cerevisiae strain, expressing a codon optimized heterologous selenocysteine methyltransferase and endowed with high intracellular levels of S-adenosyl-methionine, was able to accumulate SeMCys at levels higher than commercial selenized yeasts. A fine tuned carbon- and sulfate-limited fed-batch bioprocess was crucial to achieve good yields of biomass and SeMCys. Through the coupling of metabolic and bioprocess engineering we achieved a ∼24-fold increase in SeMCys, compared to certified reference material of selenized yeast. In addition, we investigated the interplay between sulfur and selenium metabolism and the possibility that redox imbalance occurred along with intracellular accumulation of Se. Collectively, our data show how the combination of metabolic and bioprocess engineering can be used for the production of selenized yeast enriched with beneficial Se-metabolites.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.ymben.2011.03.001 | DOI Listing |
World J Microbiol Biotechnol
January 2025
Graduate Program in Bioscience Technologies, Universidade Tecnológica Federal do Paraná, Toledo, Paraná, Brazil.
Efficient degradation of lignocellulosic biomass is key for the production of value-added products, contributing to sustainable and renewable solutions. This study employs a two-step approach to evaluate lignocellulolytic enzymes of Ceratocystis paradoxa, Colletotrichum falcatum, and Sporisorium scitamineum. First, an in silico genomic analysis was conducted to predict the potential enzyme groups produced by these fungi.
View Article and Find Full Text PDFAppl Microbiol Biotechnol
January 2025
Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224, Warsaw, Poland.
Bacteriophage infections in bacterial cultures pose a significant challenge to industrial bioprocesses, necessitating the development of innovative antiphage solutions. This study explores the antiphage potential of indigo carmine (IC), a common FDA-approved food additive. IC demonstrated selective inactivation of DNA phages (P001, T4, T1, T7, λ) with the EC values ranging from 0.
View Article and Find Full Text PDFNutrients
January 2025
Plants for Human Health Institute, North Carolina State University, 600 Laureate Way, Kannapolis, NC 28081, USA.
Unlabelled: While a balanced diet can fulfill most nutritional needs, optimizing the composition of specific foods like broccoli can amplify their health benefits.
Background/objectives: Broccoli ( L. Italica group) is a widely consumed cruciferous vegetable valued for its gastrointestinal and immune health benefits.
Int J Mol Sci
January 2025
Food Science Department, Food and Agriculture Faculty, Université Laval, Quebec, QC G1V 0A6, Canada.
Reducing the use of antibiotics in animal husbandry is essential to limit the spread of resistance. A promising alternative to antibiotics resides in bacteriocins, which are antimicrobial peptides produced by bacteria showing a great diversity in terms of spectrum of activity, structure, and mechanism of action. In this study, the effects of diverse bacteriocins on the composition and metabolic activity of chicken cecal microbiota were examined in vitro, in comparison with antibiotics.
View Article and Find Full Text PDFBiomolecules
January 2025
BioLympho Research Group, Department of Biochemistry and Molecular Biology, Faculty of Biology-Biological Research Centre (CIBUS), Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain.
This study aims to develop a protocol for respiratory disease-associated biomarker discovery by combining urine proteome studies with urinary exosome components analysis (i.e., miRNAs).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!