Vertebrate hosts of malaria parasites (Plasmodium) often harbour two or more genetically distinct clones of a single species, and interaction among these co-existing clones can play an important role in Plasmodium biology. However, how relative clonal proportions vary over time in a host is still poorly known. Experimental mixed-clone infections of the lizard malaria parasite, Plasmodium mexicanum, were followed in its natural host, the western fence lizard using microsatellite markers to determine the relative proportions of two to five co-existing clones over time (2-3 months). Results for two markers, and two PCR primer pairs for one of those, matched very closely, supporting the efficacy of the method. Of the 54 infections, 67% displayed stable relative clonal proportions, with the others showing a shift in proportions, usually with one clone outpacing the others. Infections with rapidly increasing or slowly increasing parasitemia were stable, showing that all clones within these infections reproduced at the same rapid or slow rate. Replicate infections containing the same clones did not always reveal the same growth rate, final parasitemia or dominant clone; thus there was no clone effect for these life history measures. The rate of increase in parasitemia was not associated with stable versus unstable relative proportions, but infections with four to five clones were more likely to be unstable than those with two to three clones. This rare look into events in genetically complex Plasmodium infections suggests that parasite clones may be interacting in complex and unexpected ways.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.ijpara.2011.01.010 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!