Material strategies for black-to-transmissive window-type polymer electrochromic devices.

ACS Appl Mater Interfaces

The George and Josephine Butler Polymer Research Laboratory, Department of Chemistry, Center for Macromolecular Science and Engineering, University of Florida, Gainesville, Florida 32611-7200, USA.

Published: April 2011

Black-to-transmissive switching polymer electrochromic devices (ECDs) were designed using a set of spray-processable cathodically coloring polymers, a non-color-changing electroactive polymer poly(2,2,6,6-tetramethylpiperidinyloxy-4-yl methacrylate) (PTMA) as the charge-compensating counter electrode, and a highly conducting gel electrolyte (6.5 mS cm(-1)). The color "black" was obtained by utilizing (1) individual copolymers absorbing across the visible spectrum, and (2) blends and bilayers of several polymer electrochromes with complementary spectral absorption. Neutral-state black and ink-like dark purple-blue (or "ink-black") donor-acceptor (DA) copolymers composed of the electron-donor 3,4-propylenedioxythiophene (ProDOT) and the electron-acceptor 2,1,3-benzothiadiazole (BTD) building units, which possess relatively homogeneous absorption profiles across the visible spectrum, were chosen for their propensity to switch to transmissive states upon electrochemical oxidation. A blend of magenta and cyan polymers (PProDOT-(CH(2)OEtHx)(2) and P(ProDOT-BTD-ProDOT), respectively) was produced with the goal of generating the same dark purple-blue color as that obtained with the "ink-black" DA copolymer. While the multi-polymer ECDs demonstrate high contrasts (up to 50%T), and switch from a saturated purple-blue color (L*=32, a*=13, b*=-46) to a light green-blue transmissive state (L*=83, a*=-3, b*=-6), devices made with the DA electrochromic copolymers switch more than two times faster (0.7 s to attain 95% of the full optical change) than those involving the polymer blends (1.6 s), and exhibit more neutral achromatic colors (L*=38, a*=5, b*=-25 for the colored state and L*=87, a*=-3, b*=-2 for the bleached state, correspondingly). The results obtained suggest that these materials should prove to be applicable in both transmissive- (window-type) and reflective-type ECDs.

Download full-text PDF

Source
http://dx.doi.org/10.1021/am101148sDOI Listing

Publication Analysis

Top Keywords

polymer electrochromic
8
electrochromic devices
8
visible spectrum
8
dark purple-blue
8
purple-blue color
8
polymer
5
material strategies
4
strategies black-to-transmissive
4
black-to-transmissive window-type
4
window-type polymer
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!