We present the chemical vapor deposition (CVD) reactions of the single source precursor Fe(SiCl(3))(2)(CO)(4) over Si, Ge, CoSi(2)/Si, and CoSi/Si substrates to explore the growth and doping processes of silicide nanowires (NWs). Careful investigation of the composition and morphology of the NW products and the intruded silicide films from which they nucleate revealed that the group IV elements (Si, Ge) in the NW products originate from both the precursor and the substrate, while the metal elements incorporated into the NWs (Fe, Co) originate from vapor phase precursor delivery. The use of a Ge growth substrate enabled the successful synthesis of Fe(5)Si(2)Ge NWs, the first report of a metal silicide-germanide alloy NW. Further, investigation of the pyrolysis of the CoSiCl(3)(CO)(4) precursor revealed independent delivery of Co and Si species during CVD reactions. This understanding enabled a new, more robust two-precursor synthetic route to Fe(1-x)Co(x)Si alloy NWs using Fe(SiCl(3))(2)(CO)(4) and CoCl(2).

Download full-text PDF

Source
http://dx.doi.org/10.1021/nn200387yDOI Listing

Publication Analysis

Top Keywords

≤ ≤
8
cvd reactions
8
mechanistic investigation
4
investigation growth
4
growth fe1-xcoxsi
4
4
fe1-xcoxsi ≤
4
≤ fe5si1-ygey3
4
fe5si1-ygey3 ≤
4
≤ 033
4

Similar Publications

This paper provides a thorough analysis of recent advancements and emerging trends in the integration of metal additive manufacturing (AM) within orthopedic implant development. With an emphasis on the use of various metals and alloys, including titanium, cobalt-chromium, and nickel-titanium, the review looks at their characteristics and how they relate to the creation of various orthopedic implants, such as spinal implants, hip and knee replacements, and cranial-facial reconstructions. The study highlights how metal additive manufacturing (AM) can revolutionize the field by enabling customized implant designs that take patient anatomical variances into account.

View Article and Find Full Text PDF

Global Perspectives on Returning Genetic Research Results in Parkinson Disease.

Neurol Genet

December 2024

From the Division of Neurology (A.H.T., S.-Y.L.), Department of Medicine, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia; Programa de Pós-Graduação em Ciências Médicas da Universidade Federal do Rio Grande do Sul (P.S.-A.), Clínica Santa María, Santiago, Chile; Departamento de Farmacologia (A.F.S.S.), Universidade Federal do Rio Grande do Sul; Serviço de Neurologia (A.F.S.S.), Hospital de Clínicas de Porto Alegre, Brazil; Institute of Neurogenetics (H.M., M.L.D., C.K.), University of Lübeck, Germany; Department of Biomedical Science (A.A.-A.), Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia; The Michael J. Fox Foundation for Parkinson's Research (J.S., B.F.), New York; Department of Medical and Molecular Genetics (C.E.W.), Indiana University, Indianapolis; Department of Neuroscience and Brain Health (M.L.D.), Metropolitan Medical Center, Manila, Philippines; Centre for Preventive Neurology (S.D., M.T.P., A.J.N.), Wolfson Institute of Population Health, Queen Mary University of London, United Kingdom; Unidad de Trastornos del Movimiento (M.T.P.), Servicio de Neurología y Neurofisiología Clínica, Instituto de Biomedicina de Sevilla, Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Spain; Laboratory of Neurogenetics (M.B.M.), National Institute on Aging, National Institutes of Health, Bethesda, MD; Department of Clinical and Movement Neurosciences (M.B.M., H.R.M.), UCL Queen Square Institute of Neurology, University College London, United Kingdom; Department of Neurology (R.N.A.), Columbia University Irving Medical Center, New York; Movement Disorders Division (R.N.A.), Neurological Institute, Tel Aviv Sourasky Medical Center and Tel Aviv School of Medicine, Tel Aviv University, Israel; Molecular Medicine Laboratory and Neurology Department (K.R.K.), Concord Clinical School, Concord Repatriation General Hospital, The University of Sydney; Translational Neurogenomics Group (K.R.K.), Genomic and Inherited Disease Program, Garvan Institute of Medical Research; and St Vincent's Healthcare Campus (K.R.K.), Faculty of Medicine, UNSW Sydney, Darlinghurst, New South Wales, Australia.

Background And Objectives: In the era of precision medicine, genetic test results have become increasingly relevant in the care of patients with Parkinson disease (PD). While large research consortia are performing widespread research genetic testing to accelerate discoveries, debate continues about whether, and to what extent, the results should be returned to patients. Ethically, it is imperative to keep participants informed, especially when findings are potentially actionable.

View Article and Find Full Text PDF

Abdominal aortic aneurysms (AAAs) are a significant vascular pathology in older adults, often asymptomatic but with high mortality upon rupture. Despite advancements in diagnostic imaging and surgical interventions, AAAs remain a public health concern. This research letter analyzed CDC WONDER data on AAA-related deaths (ICD-10 I71.

View Article and Find Full Text PDF

Purpose: Especially in Europe, amino acid PET is increasingly integrated into multidisciplinary neuro-oncological tumor boards (MNTBs) to overcome diagnostic uncertainties such as treatment-related changes. We evaluated the accuracy of MNTB decisions that included the O-(2-[18F]-fluoroethyl)-L-tyrosine (FET) PET information compared with FET PET results alone to differentiate tumor relapse from treatment-related changes.

Patients And Methods: In a single academic center, we retrospectively evaluated 180 MNTB decisions of 151 patients with CNS WHO grade 3 or 4 gliomas (n = 122) or brain metastases (n = 29) presenting equivocal MRI findings following anticancer treatment.

View Article and Find Full Text PDF

Vacuole fusion is driven by SNARE proteins that require activation-or priming-by the AAA+ protein Sec18 (NSF) before they can bring membranes together and trigger the merger of two bilayers into a continuous membrane. Sec18 resides on vacuoles prior to engaging inactive cis-SNARE complexes through its interaction with the regulatory lipid phosphatidic acid (PA). Binding PA causes Sec18 to undergo large conformational changes that keeps it bound to the membrane, thus precluding its interactions with SNAREs.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!