The enzyme myo-inositol oxygenase (MIOX; E.C. 1.13.99.1) catalyzes the ring-opening four-electron oxidation of myo-inositol into glucuronic acid, which is subsequently activated to UDP-glucuronic acid (UDP-GlcA) and serves as a precursor for plant cell wall polysaccharides. Starting from single T-DNA insertion lines in different MIOX-genes a quadruple knockdown (miox1/2/4/5-mutant) was obtained by crossing, which exhibits greater than 90% down-regulation of all four functional MIOX genes. Miox1/2/4/5-mutant shows no visible phenotype and produces viable pollen. The alternative pathway to UDP-glucuronic acid via UDP-glucose is upregulated in the miox1/2/4/5-mutant as a compensatory mechanism. Miox1/2/4/5-mutant is impaired in the utilization of myo-inositol for seedling growth. The incorporation of myo-inositol derived sugars into cell walls is strongly (>90%) inhibited. Instead, myo-inositol and metabolites produced from myo-inositol such as galactinol accumulate in the miox1/2/4/5-mutant. The increase in galactinol and raffinose family oligosaccharides does not enhance stress tolerance. The ascorbic acid levels are the same in mutant and wild type plants.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3123461 | PMC |
http://dx.doi.org/10.1007/s00425-011-1394-z | DOI Listing |
Int J Biol Macromol
January 2025
School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 102446, China. Electronic address:
Age-related cataract (ARC) remains the leading cause of blindness worldwide. Sagittaria sagittifolia polysaccharide (SSP) extract, a key component of Sagittaria sagittifolia L., exhibits anti-oxidant and anti-apoptotic effects with potential applications in ARC.
View Article and Find Full Text PDFGenes (Basel)
December 2024
Department of Animal Molecular Biology, National Research Institute of Animal Production, Krakowska 1 Street, 32-083 Balice, Poland.
Background: Among numerous genes that have been a focus of equine genetic research, the (Klotho) and (Alpha-actinin-3) genes stand out due to their significant roles in muscle function and overall health, as well as performance ability. Previous studies on Arabian horses and other mammalians have shown that both and occur in different isoforms that seem to have different roles in metabolism. The main purpose of this present study was to describe different isoforms (, , , , , ) expression levels affected by the endurance effort in Arabian horses.
View Article and Find Full Text PDFInt J Mol Sci
December 2024
School of Medicine, Huaqiao University, Quanzhou 362021, China.
Understanding the molecular targets of natural products is crucial for elucidating their mechanisms of action, mitigating toxicity, and uncovering potential therapeutic pathways. Icaritin (ICT), a bioactive flavonoid, demonstrates significant anti-tumor activity but lacks defined molecular targets. This study employs an advanced strategy integrating proteolysis targeting chimera (PROTAC) technology with quantitative proteomics to identify ICT's key targets.
View Article and Find Full Text PDFBiomedicines
November 2024
Department of Pathology, Northwestern University, Chicago, IL 60611, USA.
In the original publication [...
View Article and Find Full Text PDFPlant Sci
January 2025
Gansu Provincial Key Laboratory of Aridland and Crop Science, Gansu Key Laboratory of Crop Improvement and Germplasm Enhancement, Lanzhou 730070, China; College of Agronomy, Gansu Agricultural University, Lanzhou 730070, China. Electronic address:
Barley leaf stripe is an important disease caused by Pyenophora graminea that affects barley yields in the world. Ascorbic acid (AsA) interacts with key elements of a complex network orchestrating plant defense mechanisms, thereby influencing the outcome of plant-pathogen interaction. Myo-inositol oxygenase (MIOX) is a pivotal enzyme involved in plants development and environmental stimuli.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!