Stability Indicating HPTLC Determination of Meloxicam.

Indian J Pharm Sci

Pharmaceutical Sciences and Technology Division, University Institute of Chemical Techniology (Autonomous), Univesity of Mumbai, Matunga, Mumbai-400 019, India.

Published: September 2008

A simple, selective, precise and stability-indicating high-performance thin layer chromatographic method of analysis of meloxicam both as a bulk drug and in formulation has been developed. The mobile phase selected was ethyl acetate:cyclohexane:glacial acetic acid (6.5:3.5:0.02% v/v/v). The calibration curve of the drug was linear in the range of 100-500 ng. The spectrodensitometric analysis was carried out in the absorbance mode at 353 nm. The mean (±RSD) values of slope, correlation coefficient and intercept were 3183.8±0.358, 0.9996±0.0321 and 13012±7.1 respectively. The system precision and the method precision studies were carried out with RSD of 0.83 and 1.89 respectively. The limit of detection and quantitation were 30 ng and 99 ng respectively. The mean percent recovery was found to be 100.3%. The method was used to analyze meloxicam from marketed tablet formulation in the presence of commonly used excipients.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3038292PMC
http://dx.doi.org/10.4103/0250-474X.45406DOI Listing

Publication Analysis

Top Keywords

stability indicating
4
indicating hptlc
4
hptlc determination
4
determination meloxicam
4
meloxicam simple
4
simple selective
4
selective precise
4
precise stability-indicating
4
stability-indicating high-performance
4
high-performance thin
4

Similar Publications

Nanoscale Metal-Organic Frameworks for the Co-Delivery of Cycloxaprid and Pooled siRNAs to Enhance Control Efficacy in .

J Agric Food Chem

January 2025

China-Kenya Joint Laboratory for Ecological Pest Control of Citrus, State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Key Laboratory of Biopesticide and Chemical Biology, MOE, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou 350002, China.

RNA pesticides have emerged as a promising alternative to conventional chemical pesticides due to their high specificity and minimal environmental impact. However, the instability of RNA molecules in the environment and the challenges associated with their effective delivery to target pests limit their broader application. This study addresses these challenges by developing a dual delivery system using chitosan (CS) and Metal-Organic Frameworks (MOFs) to enhance the delivery and efficacy of double-stranded RNA (dsRNA) and cycloxaprid against , a vector of citrus greening disease.

View Article and Find Full Text PDF

Background: Switching between versions of medication products happens commonly despite challenges in achieving bioequivalence and therapeutic equivalence. Central nervous system and psychiatric drugs, especially those that are technically demanding to manufacture and have complex pharmacokinetic properties, such as long-acting injectables (LAIs), pose particular challenges to bioequivalence and safe and efficacious drug switching.

Aims: To assess whether drugs deemed "bioequivalent" are truly interchangeable in drug switching.

View Article and Find Full Text PDF

The study of chalcone-1,2,3-triazole hybrids for anticancer activity is quite a recent area of focus, primarily because of the increasing demand for developing new drugs to treat cancer. The chalcones and 1,2,3-triazole rings in hybrid compounds has recently emerged as a promising strategy for developing novel anticancer agents. The 1,2,3-triazole ring, known for its stability and hydrogen bonding capabilities, enhances the target binding affinity of these hybrids.

View Article and Find Full Text PDF

Two-dimensional (2D) hybrid materials, particularly those based on boron nitride (BN) and graphene oxide (GO), have attracted significant attention for energy applications owing to their distinct structural and electronic properties. BN/GO composites uniquely combine the mechanical strength, thermal stability and electrical insulation of BN with the high conductivity and flexibility of GO, creating advanced materials ideal for the fabrication of batteries, supercapacitors and fuel cells. These hybrids offer synergistic effects, enhanced charge transport, increased surface area, and improved chemical stability, making them promising candidates for high-performance energy systems.

View Article and Find Full Text PDF

Gallium: A Universal Promoter Switching CO Methanation Catalysts to Produce Methanol.

JACS Au

January 2025

Department of Chemistry and Applied Biosciences, ETH Zürich, CH-8093 Zurich, Switzerland.

Hydrogenation of CO to methanol is foreseen as a key step to close the carbon cycle. In this study, we show that introducing Ga into silica-supported nanoparticles based on group 8-9 transition noble metals (M = Ru, Os, Rh, and Ir - Ga@SiO) switches their reactivity from producing mostly methane (sel. > 97%) to producing methanol (>50% CHOH/DME sel.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!