A compact short-wavelength and middle-wavelength infrared hyperspectral imaging polarimeter (IHIP) is introduced. The sensor includes a pair of sapphire Wollaston prisms and several high-order retarders to form an imaging Fourier transform spectropolarimeter. The Wollaston prisms serve as a birefringent interferometer with reduced sensitivity to vibration versus an unequal path interferometer, such as a Michelson. Polarimetric data are acquired through the use of channeled spectropolarimetry to modulate the spectrum with the Stokes parameter information. The collected interferogram is Fourier filtered and reconstructed to recover the spatially and spectrally varying Stokes vector data across the image. The IHIP operates over a ±5° field of view and implements a dual-scan false signature reduction technique to suppress polarimetric aliasing artifacts. In this paper, the optical layout and operation of the IHIP sensor are presented in addition to the radiometric, spectral, and polarimetric calibration techniques used with the system. Spectral and spectropolarimetric results from the laboratory and outdoor tests with the instrument are also presented.

Download full-text PDF

Source
http://dx.doi.org/10.1364/AO.50.001170DOI Listing

Publication Analysis

Top Keywords

infrared hyperspectral
8
hyperspectral imaging
8
imaging polarimeter
8
wollaston prisms
8
polarimeter birefringent
4
birefringent prisms
4
prisms compact
4
compact short-wavelength
4
short-wavelength middle-wavelength
4
middle-wavelength infrared
4

Similar Publications

Using hyperspectral reflectance to detect changes in photosynthetic activity in leaves as a function of decreasing soil water content.

Photosynthetica

January 2025

Chengde Bijiashan Ecological Agriculture Technology Development Co., Ltd., 067000 Chengde, Hebei, China.

Application of hyperspectral reflectance technology to track changes in photosynthetic activity in () remains underexplored. This study aimed to investigate the relationship between hyperspectral reflectance and photosynthetic activity in the leaves of in response to a decrease in soil water content. Results demonstrated that the reflectance in both the visible light and near-infrared bands increased in conjunction with reduced soil water content.

View Article and Find Full Text PDF

In this study, we used desert soil from Gansu, China, as a sample to propose a method for designing hyperspectral stealth coatings against desert soil backgrounds within the spectral range of 400-2500 nm, and the corresponding coating was prepared. Firstly, the correlation between the composition and typical spectral detected characteristics of the desert soil was systematically analyzed. It was found that the color and the spectrum of the desert soil in the range of 400-1000 nm were influenced by different types of iron oxides.

View Article and Find Full Text PDF

Superoxide dismutase (SOD) plays an important role to respond in the defence against damage when tomato leaves are under different types of adversity stresses. This work employed microhyperspectral imaging (MHSI) and visible near-infrared (Vis-NIR) hyperspectral imaging (HSI) technologies to predict tomato leaf SOD activity. The macroscopic model of SOD activity in tomato leaves was constructed using the convolutional neural network in conjunction with the long and short-term temporal memory (CNN-LSTM) technique.

View Article and Find Full Text PDF

Introduction: Crocin-I, a water-soluble carotenoid pigment, is an important coloring constituent in gardenia fruit. It has wide application in various industries such as food, medicine, chemical industry, and so on. So the content of crocin-I plays a key role in evaluating the quality of gardenia.

View Article and Find Full Text PDF

Grapevines ( L.) are one of the most economically relevant crops worldwide, yet they are highly vulnerable to various diseases, causing substantial economic losses for winegrowers. This systematic review evaluates the application of remote sensing and proximal tools for vineyard disease detection, addressing current capabilities, gaps, and future directions in sensor-based field monitoring of grapevine diseases.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!