The epidermal growth factor receptor (EGFR) and the type I insulin-like growth factor receptor (IGF-1R) are two cell surface receptor tyrosine kinases known to cooperate to promote tumor progression and drug resistance. Combined blockade of EGFR and IGF-1R has shown improved anti-tumor activity in preclinical models. Here, we report the characterization of a stable IgG-like bispecific antibody (BsAb) dual-targeting EGFR and IGF-1R that was developed for cancer therapy. The BsAb molecule (EI-04), constructed with a stability-engineered single chain variable fragment (scFv) against IGF-1R attached to the carboxyl-terminus of an IgG against EGFR, displays favorable biophysical properties for biopharmaceutical development. Biochemically, EI-04 bound to human EGFR and IGF-1R with sub nanomolar affinity, co-engaged the two receptors simultaneously, and blocked the binding of their respective ligands with similar potency compared to the parental monoclonal antibodies (mAbs). In tumor cells, EI-04 effectively inhibited EGFR and IGF-1R phosphorylation, and concurrently blocked downstream AKT and ERK activation, resulting in greater inhibition of tumor cell growth and cell cycle progression than the single mAbs. EI-04, likely due to its tetravalent bispecific format, exhibited high avidity binding to BxPC3 tumor cells co-expressing EGFR and IGF-1R, and consequently improved potency at inhibiting IGF-driven cell growth over the mAb combination. Importantly, EI-04 demonstrated enhanced in vivo anti-tumor efficacy over the parental mAbs in two xenograft models, and even over the mAb combination in the BxPC3 model. Our data support the clinical investigation of EI-04 as a superior cancer therapeutic in treating EGFR and IGF-1R pathway responsive tumors.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3149708 | PMC |
http://dx.doi.org/10.4161/mabs.3.3.15188 | DOI Listing |
Exp Eye Res
January 2025
Department of Ophthalmology, The People's Hospital of Guangxi Zhuang Autonomous Region & Guangxi Key Laboratory of Eye Health & Guangxi Health Commission Key Laboratory of Ophthalmology and Related Systemic Diseases Artificial Intelligence Screening Technology &Institute of Ophthalmic Diseases, Guangxi Academy of Medical Sciences, Nanning, 530021, China. Electronic address:
Theriogenology
January 2025
University Farm, Faculty of Agriculture, Utsunomiya University, Tochigi, 321-4415, Japan; Department of Animal Production Science, United Graduate School of Agricultural Science, Tokyo University of Agriculture and Technology, Fuchu, Tokyo, 183-8509, Japan. Electronic address:
J Am Chem Soc
September 2024
Department of Chemistry and State Key Laboratory of Synthetic Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong SAR 999077, China.
FEMS Microbiol Ecol
January 2024
Christian Doppler Laboratory for Innovative Gut Health Concepts of Livestock, Institute of Animal Nutrition and Functional Plant Compounds, Department for Farm Animals and Veterinary Public Health, University of Veterinary Medicine Vienna, Veterinärplatz 1, 1210 Vienna, Austria.
Diets rich in readily fermentable carbohydrates primarily impact microbial composition and activity, but can also impair the ruminal epithelium barrier function. By combining microbiota, metabolome, and gene expression analysis, we evaluated the impact of feeding a 65% concentrate diet for 4 weeks, with or without a phytogenic feed additive (PFA), on the rumen ecosystem of cattle. The breaking point for rumen health seemed to be the second week of high grain (HG) diet, with a dysbiosis characterized by reduced alpha diversity.
View Article and Find Full Text PDFPathol Res Pract
December 2023
Pathology Department, Universidade Federal de São Paulo, Escola Paulista, de Medicina, Botucatu Street, 740, 1st Floor Vila Clementino, São Paulo, SP, Brazil; Laboratory of Molecular and Experimental Pathology, Universidade Federal, de São Paulo, Escola Paulista de Medicina, Pedro de Toledo Street, 781, 5th Floor - Vila Clementino, São Paulo, SP, Brazil.
Purpose: We evaluated the immunoexpression of potential markers involved in the HER2 pathway in invasive breast carcinoma with HER2 amplification treated with trastuzumab.
Methods: Samples of ninety patients diagnosed and treated at two public Brazilian hospitals with overexpressed invasive carcinoma between 2009 and 2018 were included. Several markers (Bcl-2, CDK4, cyclin D1, EGFR, IGF1, IGF-1R, MDM2, MUC4, p16, p21, p27, p53, PTEN, RA, TNFα, and VEGF) were immune analyzed in the tumor by immunohistochemistry and then correlated with clinicopathological variables.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!