We investigate the dynamics of a domain wall in a ferromagnetic nanowire with spin-transfer torque. The critical current condition is obtained analytically. Below the critical current, we get the static domain wall solution, which shows that the spin-polarized current cannot drive a domain wall moving continuously. In this case, the spin-transfer torque plays both the anti-precession and anti-damping roles, which counteracts not only the spin precession driven by the effective field but also Gilbert damping of the moment. Above the critical value, the dynamics of the domain wall exhibits the novel screw-pitch effect characterized by the temporal oscillation of domain wall velocity and width, respectively. Both the theoretical analysis and numerical simulation demonstrate that this novel phenomenon arises from the conjunctive action of Gilbert damping and spin-transfer torque. We also find that the roles of spin-transfer torque are completely opposite for the cases below and above the critical current.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1088/0953-8984/22/21/216001 | DOI Listing |
Proc Natl Acad Sci U S A
February 2025
Department of Molecular Microbiology, Washington University in St. Louis, School of Medicine, St. Louis, MO 63130.
bradyzoites reside in tissue cysts that undergo cycles of expansion, rupture, and release to foster chronic infection. The glycosylated cyst wall acts as a protective barrier, although the processes responsible for formation, remodeling, and turnover are not understood. Herein, we identify a noncanonical chitinase-like enzyme TgCLP1 that localizes to micronemes and is targeted to the cyst wall after secretion.
View Article and Find Full Text PDFArch Microbiol
January 2025
Department of Microbiology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang, Selangor, 43400, Malaysia.
Bacteriophages produce endolysins at the end of the lytic cycle, which are crucial for lysing the host cells and releasing virion progeny. This lytic feature allows endolysins to act as effective antimicrobial alternatives when applied exogenously. Staphylococcal endolysins typically possess a modular structure with one or two enzymatically active N-terminal domains (EADs) and a C-terminal cell wall binding domain (CBD).
View Article and Find Full Text PDFmSphere
January 2025
Department of Biological Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania, USA.
Unlabelled: During infection, bacterial pathogens rely on secreted virulence factors to manipulate the host cell. However, in gram-positive bacteria, the molecular mechanisms underlying the folding and activity of these virulence factors after membrane translocation are not clear. Here, we solved the protein structures of two secreted parvulin and two secreted cyclophilin-like peptidyl-prolyl isomerase (PPIase) ATP-independent chaperones found in gram-positive streptococcal species.
View Article and Find Full Text PDFNat Mater
January 2025
Condensed Matter Physics and Materials Science Division, Brookhaven National Laboratory, Upton, NY, USA.
Spin waves, or magnons, are essential for next-generation energy-efficient spintronics and magnonics. Yet, visualizing spin-wave dynamics at nanoscale and microwave frequencies remains a formidable challenge due to the lack of spin-sensitive, time-resolved microscopy. Here we report a breakthrough in imaging dipole-exchange spin waves in a ferromagnetic film owing to the development of laser-free ultrafast Lorentz electron microscopy, which is equipped with a microwave-mediated electron pulser for high spatiotemporal resolution.
View Article and Find Full Text PDFPlant Cell Physiol
January 2025
Institute for Chemical Research, Kyoto University, Gokasho, Uji, 611-0011 Kyoto, Japan.
Lotus japonicus-ROOT HAIR LESS1-LIKE1 (LRL1) of Arabidopsis thaliana encodes a basic helix-loop-helix (bHLH) transcription factor (TF) involved in root hair development. Root hair development is regulated by an elaborate transcriptional network, in which GLABRA2 (GL2), a key negative regulator, directly represses bHLH TF genes, including LRL1 and ROOT HAIR DEFECTIVE6 (RHD6). Although RHD6 and its paralogous TFs have been shown to connect downstream to genes involved in cell morphological events such as endomembrane and cell wall modification, the network downstream of LRL1 remains elusive.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!