Hydrogen sulfide is a partially redox-independent activator of the human jejunum Na+ channel, Nav1.5.

Am J Physiol Gastrointest Liver Physiol

Enteric Neuroscience Program, Division of Gastroenterology and Hepatology, Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, Minnesota 55905, USA.

Published: June 2011

Hydrogen sulfide (H(2)S) is produced endogenously by L-cysteine metabolism. H(2)S modulates several ion channels with an unclear mechanism of action. A possible mechanism is through reduction-oxidation reactions attributable to the redox potential of the sulfur moiety. The aims of this study were to determine the effects of the H(2)S donor NaHS on Na(V)1.5, a voltage-dependent sodium channel expressed in the gastrointestinal tract in human jejunum smooth muscle cells and interstitial cells of Cajal, and to elucidate whether H(2)S acts on Na(V)1.5 by redox reactions. Whole cell Na(+) currents were recorded in freshly dissociated human jejunum circular myocytes and Na(V)1.5-transfected human embryonic kidney-293 cells. RT-PCR amplified mRNA for H(2)S enzymes cystathionine β-synthase and cystathionine γ-lyase from the human jejunum. NaHS increased native Na(+) peak currents and shifted the half-point (V(1/2)) of steady-state activation and inactivation by +21 ± 2 mV and +15 ± 3 mV, respectively. Similar effects were seen on the heterologously expressed Na(V)1.5 α subunit with EC(50)s in the 10(-4) to 10(-3) M range. The reducing agent dithiothreitol (DTT) mimicked in part the effects of NaHS by increasing peak current and positively shifting steady-state activation. DTT together with NaHS had an additive effect on steady-state activation but not on peak current, suggesting that the latter may be altered via reduction. Pretreatment with the Hg(2+)-conjugated oxidizer thimerosal or the alkylating agent N-ethylmaleimide inhibited or decreased NaHS induction of Na(V)1.5 peak current. These studies show that H(2)S activates the gastrointestinal Na(+) channel, and the mechanism of action of H(2)S is partially redox independent.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3119119PMC
http://dx.doi.org/10.1152/ajpgi.00556.2010DOI Listing

Publication Analysis

Top Keywords

human jejunum
16
steady-state activation
12
peak current
12
hydrogen sulfide
8
na+ channel
8
mechanism action
8
h2s
7
human
5
nav15
5
nahs
5

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!