Objectives: This study was initiated to collect retrospective information on the occurrence of plasmid-mediated quinolone resistance (PMQR) in Salmonella enterica and Escherichia coli isolates in Europe and to identify the responsible genes.

Methods: Databases of national reference laboratories containing MIC values for Salmonella and E. coli isolated between 1994 and 2009 in animals, humans, food and the environment from 13 European countries were screened for isolates exhibiting a defined quinolone resistance phenotype, i.e. reduced susceptibility to fluoroquinolones and nalidixic acid. PCR and sequence analysis were performed to identify the responsible PMQR genes.

Results: Screening of databases of 13 European countries resulted in a selection of 1215 Salmonella and 333 E. coli isolates. PMQR genes were identified in 59% of the Salmonella isolates and 15% of the E. coli isolates selected. In Salmonella, qnrS1 (n = 125) and variants of qnrB (n = 138) were frequently identified, whereas qnrA1 (n = 3) and aac(6')-1b-cr (n = 3) were rarely found. qnrD was detected in 22 Salmonella isolates obtained from humans and animals. In E. coli, qnrS1 was identified in 19 isolates and qnrB19 was found in one isolate. No qnrC or qepA genes were detected in either Salmonella or E. coli.

Conclusions: This study shows the occurrence and dissemination of PMQR genes in Salmonella and E. coli in Europe with a defined quinolone resistance phenotype. We also report the first detection of qnrD in Salmonella collected in Europe.

Download full-text PDF

Source
http://dx.doi.org/10.1093/jac/dkr084DOI Listing

Publication Analysis

Top Keywords

quinolone resistance
16
european countries
12
coli isolates
12
salmonella
10
study occurrence
8
occurrence plasmid-mediated
8
plasmid-mediated quinolone
8
salmonella enterica
8
enterica escherichia
8
escherichia coli
8

Similar Publications

The SOS Response Activation and the Risk of Antibiotic Resistance Enhancement in spp. Strains Exposed to Subinhibitory Concentrations of Ciprofloxacin.

Int J Mol Sci

December 2024

Department of Biology of Bacteria, Institute of Microbiology, Biotechnology and Immunology, Faculty of Biology and Environmental Protection, University of Lodz, 90-237 Lodz, Poland.

The widespread and inappropriate use of antibiotics, for therapeutic and prophylactic purposes, has contributed to a global crisis of rapidly increasing antimicrobial resistance of microorganisms. This resistance is often associated with elevated mutagenesis induced by the presence of antibiotics. Additionally, subinhibitory concentrations of antibiotics can trigger stress responses in bacteria, further exacerbating this problem.

View Article and Find Full Text PDF

Can α-Mangostin and Photodynamic Therapy Support Ciprofloxacin in the Inactivation of Uropathogenic and Strains?

Int J Mol Sci

December 2024

Department of Biology and Medical Parasitology, Faculty of Medicine, Wrocław Medical University, Mikulicza-Radeckiego 9, 50-345 Wroclaw, Poland.

Multidrug-resistant bacteria represent a significant challenge in the treatment of bacterial infections, often leading to therapeutic failures. This issue underlines the need to develop strategies that improve the efficacy of conventional antibiotic therapies. In this study, we aimed to assess whether a plant-derived compound, α-mangostin, and photodynamic therapy (PDT) could enhance the antibacterial activity of ciprofloxacin against uropathogenic strains of and .

View Article and Find Full Text PDF

Excess consumption of antibiotics leads to antibiotic resistance that hinders the control and cure of microbial diseases. Therefore, it is crucial to monitor the antibiotic levels in the environment. In this proposed research work, an optical nano-sensor was devised that can sense the ultra-low concentration of antibiotics, in samples like tap water using fluorescent zinc oxide quantum dots (ZnO QDs) based nano-sensor.

View Article and Find Full Text PDF

As failure rates for traditional antimicrobial therapies escalate, recent focus has shifted to evolution-based therapies to slow resistance. Collateral sensitivity-the increased susceptibility to one drug associated with evolved resistance to a different drug-offers a potentially exploitable evolutionary constraint, but the manner in which collateral effects emerge over time is not well understood. Here, we use laboratory evolution in the opportunistic pathogen Enterococcus faecalis to phenotypically characterize collateral profiles through evolutionary time.

View Article and Find Full Text PDF

This study aimed to explore the interactions among genetic determinants influencing ciprofloxacin resistance in . Treatment with PAβN, an efflux pump inhibitor, resulted in a 4-32-fold reduction in the minimum inhibitory concentration (MIC) across all 18 ciprofloxacin-resistant isolates. Notably, isolates without point mutations reverted from resistance to sensitivity.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!