Background: Ca(2+)/calmodulin-dependent protein kinase (CaMKII) activation is known to be associated with conditions where the incidence of arrhythmias is increased, and where cardiomyocyte Ca(2+)-overload occurs. The goal of this study was to determine whether CaMKII inhibition in the intact heart may be linked to the suppression of ventricular arrhythmias occurring during reperfusion after an ischemic insult.

Methods: Non-paced male rat hearts (n = 8-11) were treated with a CaMKII inhibitor (KN93, 2.5 μmol/L) 10 min prior to global ischemia (20 min) and for the initial 10 min of reperfusion. Cardiac mechanical and arrhythmic responses were evaluated under constant pressure perfusion conditions and myocyte damage assessed by measurement of coronary effluent lactate dehydrogenase (LDH).

Results: Under basal conditions, KN93 increased coronary flow (41 ± 8% increase, p<0.05) and was negatively inotropic (29 ± 7% decrease, p<0.05), but did not affect heart rate. Ischemic contracture was significantly diminished in KN93-treated hearts (onset, min: 11.48 ± 0.50 vs 16.27 ± 1.23, p<0.05). CaMKII inhibition in early reperfusion almost completely abolished the incidence of ventricular tachycardia/fibrillation in reperfusion (11/11 control vs 1/8 KN93). In the absence of ventricular arrhythmias, heart rate was substantially reduced (% basal; 100 ± 3% vs 46 ± 8%, p<0.05) throughout reperfusion. Left ventricular developed pressure was initially low in KN93 hearts post-ischemia, but recovered to control levels by the end of 60 min reperfusion (68 ± 5% vs 56 ± 5%, p = ns). LDH was significantly reduced in KN93-treated hearts.

Conclusion: Although CaMKII inhibition diminishes contractile performance of the intact heart in the initial post-ischemic period, it provides crucial benefits through protection against potentially lethal reperfusion-induced arrhythmias and cardiomyocyte sarcolemmal rupture.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ijcard.2011.02.038DOI Listing

Publication Analysis

Top Keywords

ca2+/calmodulin-dependent protein
8
protein kinase
8
kinase inhibition
4
inhibition suppresses
4
suppresses post-ischemic
4
post-ischemic arrhythmogenesis
4
arrhythmogenesis mediates
4
mediates sinus
4
sinus bradycardic
4
bradycardic recovery
4

Similar Publications

Calcium/calmodulin-dependent protein kinase II α and β differentially regulate mammalian sleep.

Commun Biol

January 2025

Chinese Institute of Brain Research, Beijing (CIBR), and Chinese Institutes for Medical Research, Beijing (CIMR), Capital Medical University, Beijing, China.

While sleep is important, our understanding of its molecular mechanisms is limited. Over the last two decades, protein kinases including Ca/calmodulin-dependent protein kinase II (CaMKII) α and β have been implicated in sleep regulation. Of all the known mouse genetic mutants, the biggest changes in sleep is reported to be observed in adult mice with sgRNAs for Camk2b injected into their embryos: sleep is reduced by approximately 120 min (mins) over 24 h (hrs).

View Article and Find Full Text PDF

Sympathoexcitation is a hallmark of heart failure, with sustained β-adrenergic receptor (βAR)-G protein signaling activation. βAR signaling is modulated by regulator of G protein signaling (RGS) proteins. Previously, we reported that Gα regulation by RGS2 or RGS5 is key to ventricular rhythm regulation, while the dual loss of both RGS proteins results in left ventricular (LV) dilatation and dysfunction.

View Article and Find Full Text PDF

Ca/calmodulin-dependent protein kinase II β decodes ER Ca transients to trigger autophagosome formation.

Mol Cell

December 2024

National Laboratory of Biomacromolecules, New Cornerstone Science Laboratory, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China; College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China. Electronic address:

In multicellular organisms, very little is known about how Ca transients on the ER outer surface elicited by autophagy stimuli are sustained and decoded to trigger autophagosome formation. Here, we show that Ca/calmodulin-dependent protein kinase II β (CaMKIIβ) integrates ER Ca transients to trigger liquid-liquid phase separation (LLPS) of the autophagosome-initiating FIP200 complex. In response to ER Ca transients, CaMKIIβ is recruited from actin filaments and forms condensates, which serve as sites for the emergence of or interaction with FIP200 puncta.

View Article and Find Full Text PDF

Meningioma is the most prevalent primary intracranial tumor, with approximately half of patients harboring NF2 alteration. The rationale behind the presence of NF2 alteration in meningiomas and its absence in non-nerve system tumors remains elusive. Therefore, meningiomas and several non-nerve system tumor types were analyzed using KEGG analysis and CRISPR/Cas 9 technology to determine the role of NF2 in regulating tissue specificity.

View Article and Find Full Text PDF

Familial Alzheimer's disease mutations in amyloid precursor protein impair calcineurin signaling to NMDA receptors.

J Biol Chem

December 2024

Department of Pharmacology, Addiction Science, and Toxicology, College of Medicine, The University of Tennessee Health Science Center; Memphis, 38163. Electronic address:

Familial Alzheimer's disease (FAD) is frequently associated with mutations in the amyloid precursor protein (APP), which are thought to lead to cognitive deficits by impairing NMDA receptor (NMDAR)-dependent forms of synaptic plasticity. Given the reliance of synaptic plasticity on NMDAR-mediated Ca entry, shaping of NMDAR activity by APP and/or its disease-causing variants could provide a basis for understanding synaptic plasticity impairments associated with FAD. A region of APP (residues 639-644 within APP695) processed by the γ-secretase complex, which generates amyloid β (Aβ) peptides, is a hotspot for FAD mutations.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!