The interaction between calcineurin B homologous protein 2 (CHP2) and Na(+) /H(+) exchanger 1 (NHE1), two membrane proteins, is essential for protecting cells from serum deprivation-induced death. Although four putative EF-hands in CHP2 had been predicted for years, Ca²(+) -binding activities of these motifs have not been tested yet, their role in this process remain poorly understood. To identify Ca²(+) -binding motifs required for the stable formation of CHP2/NHE1 complexes, we developed a mutagenesis-based assay in PS120 cells. We found that (45) Ca²(+) bond to two EF-hand motifs (EF3 and 4) of CHP2 proteins with high affinity. Complex formation between CHP2 and the CHP2 binding domain of NHE1 resulted in a marked increase in the Ca²(+) -binding affinity of CHP2. Co-immunoprecipitation and distribution of GFP-tagged CHP2-EF3m/4m also indicated that Ca²(+) affected the membrane location of CHP2 to interact with NHE1. The C-terminal region of CHP2 contains a nuclear export sequence (NES). When the six leucines of NES were mutated to alanines, the resulting CHP2 protein was predominantly localized to the nucleus. Furthermore, mutation of the NES resulted in enhanced proliferation and oncogenic potential of HeLa cells. Together, these results show that calcium and NES control the subcellular distribution of CHP2 and then distinctively regulate cell proliferation.

Download full-text PDF

Source
http://dx.doi.org/10.1111/j.1365-2443.2011.01497.xDOI Listing

Publication Analysis

Top Keywords

ca²+ -binding
12
chp2
11
calcineurin homologous
8
homologous protein
8
protein chp2
8
enhanced proliferation
8
ca²+
5
nuclear accumulation
4
accumulation calcineurin
4
chp2 enhanced
4

Similar Publications

The COVID-19 pandemic posed a threat to global society. Delta and Omicron are concerning variants due to the risk of increasing human-to-human transmissibility and immune evasion. This study aims to evaluate the binding ability of these variants toward the angiotensin-converting enzyme 2 receptor and antibodies using a computational approach.

View Article and Find Full Text PDF

The present study explores the conformational dynamics of the membrane protein of Middle East Respiratory Syndrome Coronavirus (MERS-CoV) within the Endoplasmic Reticulum-Golgi Intermediate Compartment (ERGIC) complex using an all-atomistic molecular dynamics simulation approach. Significant structural changes were observed in the N-terminal, C-terminal, transmembrane, and beta-sheet sandwich domains of the MERS-CoV membrane protein. This study also highlights the structural similarities between the MERS-CoV and the SARS-CoV-2 membrane proteins, particularly in how both exhibit a distinct kink in the transmembrane helix caused by aromatic residue-lipid interactions.

View Article and Find Full Text PDF

ZAR1/2-Regulated Epigenetic Modifications are Essential for Age-Associated Oocyte Quality Maintenance and Zygotic Activation.

Adv Sci (Weinh)

January 2025

Department of Obstetrics and Gynecology, Zhejiang Key Laboratory of Precise Protection and Promotion of Fertility, Zhejiang Provincial Clinical Research Center for Reproductive Health and Disease, Assisted Reproduction Unit, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, 310016, China.

The developmental competence and epigenetic progression of oocytes gradually become dysregulated with increasing maternal age. However, the mechanisms underlying age-related epigenetic regulation in oocytes remain poorly understood. Zygote arrest proteins 1 and 2 (ZAR1/2) are two maternal factors with partially redundant roles in maintaining oocyte quality, mainly known by regulating mRNA stability.

View Article and Find Full Text PDF

Previous studies highlighting the pivotal function of the S100A8 protein have shown that inflammation and vascular endothelial harm play a major role in deep vein thrombosis (DVT) development, as evidenced by earlier studies highlighting the pivotal function of the S100 calcium-binding protein A8 (S100A8). Therefore, we aimed to establish a connection between S100A8 and DVT and investigate the role of S100A8 in DVT development. Blood specimens were taken from 23 patients with DVT and 31 controls.

View Article and Find Full Text PDF

Circular RNAs in cancer: roles, mechanisms, and therapeutic potential across colorectal, gastric, liver, and lung carcinomas.

Discov Oncol

January 2025

Department of Bioscience and Biotechnology, Banasthali Vidyapith, Niwai-Tonk, Rajasthan, 304022, India.

The prominence of circular RNAs (circRNAs) has surged in cancer research due to their distinctive properties and impact on cancer development. This review delves into the role of circRNAs in four key cancer types: colorectal cancer (CRC), gastric cancer (GC), liver cancer (HCC), and lung cancer (LUAD). The focus lies on their potential as cancer biomarkers and drug targets.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!