Nine polyphenols in the aerial parts of Mentha longifolia have been separated by chromatographic techniques. Their structures have been confirmed by HPLC/electrospray ionization-MS/MS. The compounds identified included rosmarinic acid, salvianolic acid L, dedihydro-salvianolic acid, luteolin-glucuronide, luteolin-diglucuronide, luteolin-glucopyranosyl-rhamnopyranoside, and eriodictyol-glucopyranosyl-rhamnopyranoside. The extracts of M. longifolia and M. piperita field plants, in vitro plants, callus tissues, and cell suspension cultures were profiled, and their polyphenol composition was compared in different tissues and quantified using ultra-performance column liquid chromatography (UPLC)/triple-quadrupole-MS in the selected-ion recording detection mode. Determination of desired compounds was based on calibration curves obtained for standards, which were previously isolated from M. longifolia aerial parts. The UPLC profiles revealed considerable differences in the synthesis of secondary metabolites among samples coming from field plants, in vitro plants, callus tissues, and cell suspension cultures. Plant tissues coming from field cultivation (for both M. piperita and M. longifolia) contained several phenolic compounds (flavonoids and phenolic acids), whereas plants from in vitro conditions, callus tissues, and suspension cultures contained only a few of them. Rosmarinic acid dominated in all of these samples. These results show that under in vitro conditions, the metabolism of phenolics undergoes a fundamental change.

Download full-text PDF

Source

Publication Analysis

Top Keywords

plants vitro
12
callus tissues
12
suspension cultures
12
mentha longifolia
8
longifolia piperita
8
aerial parts
8
rosmarinic acid
8
field plants
8
vitro plants
8
plants callus
8

Similar Publications

The current research was conducted to synthesize Parietaria alsinifolia-mediated iron oxide nanoparticles (P.A@FeONPs) using the green and eco-friendly protocol. The biosynthesized P.

View Article and Find Full Text PDF

KIF18A Is a Novel Target of JNK1/c-Jun Signaling Pathway Involved in Cervical Tumorigenesis.

J Cell Physiol

January 2025

Tianjin Key Laboratory of Animal and Plant Resistance, College of Life Sciences, Tianjin Normal University, Tianjin, China.

Cervical cancer remains a significant global health concern. KIF18A, a kinesin motor protein regulating microtubule dynamics during mitosis, is frequently overexpressed in various cancers, but its regulatory mechanisms are poorly understood. This study investigates KIF18A's role in cervical cancer and its regulation by the JNK1/c-Jun signaling pathway.

View Article and Find Full Text PDF

Prospect of using ethnobotanicals to manage snakebites in a cost-effective manner: validating Senegalia mellifera extract's inhibitory potential on Naja nigricincta nigricincta (zebra cobra) venom.

Trans R Soc Trop Med Hyg

January 2025

Department of Biology, Chemistry and Physics, Faculty of Health, Natural Resources and Applied Sciences, Namibia University of Science and Technology, Private Bag 13388, 13 Jackson Kaujeua Street Windhoek, Windhoek, Namibia.

Background: Despite Naja nigricincta nigricincta being responsible for most snake envenomation in remote Namibian regions, an effective intervention against its venom remains undiscovered. This study aimed to scientifically validate Namibian folklore claims about Senegalia mellifera extract's efficacy against snake envenomation.

Methods: In vitro assays were conducted to assess the inhibitory potential of S.

View Article and Find Full Text PDF

Sheath blight, caused by AG1 IA, is a challenging disease of rice worldwide. In the current study, nine isolates, within the anastomosis group AG-1 IA, were isolated, characterized based on their macroscopic and microscopic features, as well as their ability to produce cell wall degrading enzymes (CWDEs), and further molecularly identified via ITS sequencing. Although all isolates were pathogenic and produced typical sheath blight symptoms the susceptible rice cultivar, Sakha 101, AG1 IA -isolate SHBP9 was the most aggressive isolate.

View Article and Find Full Text PDF

Relationship between dietary fiber physicochemical properties and feedstuff fermentation characteristics and their effects on nutrient utilization, energy metabolism, and gut microbiota in growing pigs.

J Anim Sci Biotechnol

January 2025

Key Laboratory of Animal Production, Product Quality and Security, Ministry of Education, Jilin Provincial Key Laboratory of Animal Nutrition and Feed Science, Jilin Provincial Science and Technology Innovation Center of Pig industry Technology, College of Animal Science and Technology, Jilin Agricultural University, Changchun, China.

Background: There is a growing focus on using various plant-derived agricultural by-products to increase the benefits of pig farming, but these feedstuffs are fibrous in nature. This study investigated the relationship between dietary fiber physicochemical properties and feedstuff fermentation characteristics and their effects on nutrient utilization, energy metabolism, and gut microbiota in growing pigs.

Methods: Thirty-six growing barrows (47.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!