Model of automobile emission checking by wireless technology.

J Environ Sci Eng

Faculty of Mechanical Engineering, Kamaraj College of Engineering and Technology, Virudhunagar-626 001, India.

Published: July 2010

Air contains a lot of pollutants and most of these pollutants are toxic. Carbon monoxide (CO) is one of the five primary pollutants, which together contributes more than 90% of global atmospheric pollution. Therefore, CO has been chosen for this analytical study. The main source of CO is the exhaust from automobiles only. In the present situation, the usage of motor vehicles rapidly expanded. The number of vehicles cannot be reduced but their emission (which is a cause for pollution) can be effectively controlled. In this direction, a model has been developed in this study to sense the level of carbon monoxide emitted from the automobiles. When the exhaust reaches a harmful level it sends the data about the vehicle number and the concentration of CO to the emission-testing centre (PC). As a result the government can take necessary action to seize the particular vehicle emitting more carbon monoxide than the permitted level.

Download full-text PDF

Source

Publication Analysis

Top Keywords

carbon monoxide
12
model automobile
4
automobile emission
4
emission checking
4
checking wireless
4
wireless technology
4
technology air
4
air lot
4
lot pollutants
4
pollutants pollutants
4

Similar Publications

In the ancient microbial Wood-Ljungdahl pathway, carbon dioxide (CO) is fixed in a multistep process that ends with acetyl-coenzyme A (acetyl-CoA) synthesis at the bifunctional carbon monoxide dehydrogenase/acetyl-CoA synthase complex (CODH/ACS). In this work, we present structural snapshots of the CODH/ACS from the gas-converting acetogen , characterizing the molecular choreography of the overall reaction, including electron transfer to the CODH for CO reduction, methyl transfer from the corrinoid iron-sulfur protein (CoFeSP) partner to the ACS active site, and acetyl-CoA production. Unlike CODH, the multidomain ACS undergoes large conformational changes to form an internal connection to the CODH active site, accommodate the CoFeSP for methyl transfer, and protect the reaction intermediates.

View Article and Find Full Text PDF

Introduction: Hormonal contraceptives (HCs), which contain synthetic forms of estrogen (i.e., ethinyl estradiol) and/or progesterone (i.

View Article and Find Full Text PDF

Aim: To evaluate the correlation between semi-quantitative analyses and visual scores of pulmonary perfusion Single Photon Emission Computed Tomography (SPECT)/ Computed Tomography (CT) imaging and pulmonary function test parameters (PFTs) in patients with interstitial lung diseases (ILDs).

Materials And Methods: This retrospective study included 35 patients with ILDs from China-Japan Friendship Hospital between January 2020 and December 2022. All patients underwent pulmonary perfusion SPECT/CT imaging and a pulmonary function test.

View Article and Find Full Text PDF

Quinone extraction drives atmospheric carbon monoxide oxidation in bacteria.

Nat Chem Biol

January 2025

Department of Microbiology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia.

Diverse bacteria and archaea use atmospheric CO as an energy source for long-term survival. Bacteria use [MoCu]-CO dehydrogenases (Mo-CODH) to convert atmospheric CO to carbon dioxide, transferring the obtained electrons to the aerobic respiratory chain. However, it is unknown how these enzymes oxidize CO at low concentrations and interact with the respiratory chain.

View Article and Find Full Text PDF

Utilization of Chlorella vulgaris methyl ester blend with diethyl ether to mitigate emissions of an unaltered single cylinder ci engine.

Environ Sci Pollut Res Int

January 2025

Engine Testing Laboratory, Department of Automobile Engineering, College of Engineering and Technology, SRM Institute of Science and Technology, Kattankulathur, 603203, Tamil Nadu, India.

The present work emphasizes the viability of methyl ester production, characterization, and utilization of third-generation biofuel from Chlorella vulgaris microalgae. The presence of methyl oleate (CHO) in the Chlorella vulgaris methyl ester (CVME) algae signifies the existence of higher oxidation stability and prone to peroxidation. The single-stage transesterified CVME algae contains majorly (C-H) functional group trailed by (C = O), (C-O), (O-CH), (C-O-C) with the elemental compositions of 66.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!