A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Bioconcentration potential of metallic elements by Poison Pax (Paxillus involutus) mushroom. | LitMetric

Bioconcentration potential of metallic elements by Poison Pax (Paxillus involutus) mushroom.

J Environ Sci Health A Tox Hazard Subst Environ Eng

Research Group of Environmental Chemistry, Ecotoxicology & Food Toxicology, Institute of Environmental Sciences & Public Health, University of Gdansk, Gdansk, Poland.

Published: May 2011

AI Article Synopsis

  • The study investigated how the Poison Pax fungus (Paxillus involutus) accumulates various metallic elements from soil and mushrooms collected from 12 sites in Poland, using techniques like ICP-AES for analysis.
  • Results showed that elements like K, Rb, and Cu were significantly concentrated in the mushroom caps, while Al, Ba, Fe, and Pb were excluded, pointing to a selective uptake process.
  • The research suggests that the fungus’s biological characteristics, rather than just the labile metal content in the soil, greatly influence its ability to absorb and translocate metals to its fruiting bodies.

Article Abstract

Bioconcentration potential of Ag, Al, Ba, Ca, Cd, Co, Cr, Cu, Fe, Hg, K, Mg, Mn, Na, Ni, Sr, Pb, Rb and Zn by Pioson Pax (Paxillus involutus) fungus was investigated in field collections of mushrooms from 12 geographically distant sites in Poland. Caps, stipes and soil (0-15 cm layer) underneath to the fruiting bodies were examined. Inductively coupled plasma - atomic emission spectrometry (ICP-AES) was used to determine the total metallic elements content. Both "labile" (cold 20% HNO(3) extraction) and "pseudo-total" (cold and hot 65% HNO(3) extraction) fractions of metallic elements of soil were determined. K, Rb and Cu were effectively bio-concentrated by Poison Pax in caps and their BCF values were 1000 ± 520, 740 ± 540 and 100 ± 79, and less were Zn, Na, Mg and Ni with BCF of 40 ± 28, 33 ± 23, 18 ± 10 and 1.9 ± 1.4, respectively. Al, Ba, Co, Cr, Fe, Mn, Sr and Pb were bio-excluded (BCF < 1 in caps and stipes). The "labile" Ag, Cd and Hg content of soil was below detection limit of the analytical method. Ba, Ca, Mn, Na and Sr were more eficiently bio-concentrated in stipes of Poison Pax, while Fe, Mg, Pb and Rb in caps, and Al, Co, Cr, Cu, K, Ni and Zn similarly in caps and stipes. Also Ag and Cd (and Hg) were more effectively bio-concentrated in caps than stipes. Al, Ba, Fe and Pb were bio-excluded by Poison Pax (BCF < 0.2) but were abundant minerals of soil and more or less abundant also in carpophores. Some intermetallic relationships (co-uptake and binding) are evident for Poison Pax. The amount of "labile" fraction of metallic elements contained in soil doesn't seem to explain the Poisson's Pax accumulation potential for these elements. Biological features of species, which are related to its ability to enable, enhance or reduce uptake of metallic elements by mycelium and further translocation and binding in carpophores but in parallel also translocation to symbiotic plant can be major forces impacting amounts accumulated in caps and stipes. Metallic elements concentrations determined in fruiting bodies seem to explain in the best way what is largely bioavailable from the substrate in situ to a given mushroom species.

Download full-text PDF

Source
http://dx.doi.org/10.1080/10934529.2011.542387DOI Listing

Publication Analysis

Top Keywords

metallic elements
24
poison pax
20
caps stipes
20
bioconcentration potential
8
pax paxillus
8
paxillus involutus
8
fruiting bodies
8
hno3 extraction
8
effectively bio-concentrated
8
pax caps
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!