The effects of environmental structures on the electronic states of functional regions in a fully solvated DNA·protein complex were investigated using combined ab initio quantum mechanics/molecular mechanics calculations. A complex of a transcriptional factor, PU.1, and the target DNA was used for the calculations. The effects of solvent on the energies of molecular orbitals (MOs) of some DNA bases strongly correlate with the magnitude of masking of the DNA bases from the solvent by the protein. In the complex, PU.1 causes a variation in the magnitude among DNA bases by means of directly recognizing the DNA bases through hydrogen bonds and inducing structural changes of the DNA structure from the canonical one. Thus, the strong correlation found in this study is the first evidence showing the close quantitative relationship between recognition modes of DNA bases and the energy levels of the corresponding MOs. Thus, it has been revealed that the electronic state of each base is highly regulated and organized by the DNA recognition of the protein. Other biological macromolecular systems can be expected to also possess similar modulation mechanisms, suggesting that this finding provides a novel basis for the understanding for the regulation functions of biological macromolecular systems.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1088/0953-8984/22/15/152101 | DOI Listing |
BMC Bioinformatics
January 2025
Auburn University, Auburn, AL, 36849, USA.
Background: Pacific Biosciences (PacBio) circular consensus sequencing (CCS), also known as high fidelity (HiFi) technology, has revolutionized modern genomics by producing long (10 + kb) and highly accurate reads. This is achieved by sequencing circularized DNA molecules multiple times and combining them into a consensus sequence. Currently, the accuracy and quality value estimation provided by HiFi technology are more than sufficient for applications such as genome assembly and germline variant calling.
View Article and Find Full Text PDFSci Adv
January 2025
Developmental Therapeutics Branch, Center for Cancer Research, National Cancer Institute, National Institute of Health, Bethesda, MD 20892, USA.
DNA-protein cross-links (DPCs) are among the most detrimental genomic lesions. They are ubiquitously produced by formaldehyde (FA), and failure to repair FA-induced DPCs blocks chromatin-based processes, leading to neurodegeneration and cancer. The type, structure, and repair of FA-induced DPCs remain largely unknown.
View Article and Find Full Text PDFPLoS One
January 2025
Department of Parasitology and Entomology, Faculty of Public Health, Mahidol University, Bangkok, Thailand.
SURFINs protein family expressed on surface of both infected red blood cell and merozoite surface making them as interesting vaccine candidate for erythrocytic stage of malaria infection. In this study, we analyze genetic variation of Pfsurf4.1 gene, copy number variation, and frequency of SURFIN4.
View Article and Find Full Text PDFInt J Mol Sci
December 2024
Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima 734-8553, Japan.
DNA polymerases frequently misincorporate ribonucleoside 5'-triphosphates into nascent DNA strands. This study examined the effects of an incorporated ribonucleoside on untargeted mutations in human cells. Riboguanosine (rG) was introduced into the downstream region of the gene to preferentially detect the untargeted mutations.
View Article and Find Full Text PDFInt J Mol Sci
December 2024
Institute of Biological Bases of Animal Production, University of Life Sciences in Lublin, Akademicka 13 St., 20-950 Lublin, Poland.
This study presents a comprehensive analysis of mitochondrial DNA (mtDNA) variations in dogs diagnosed with primary and recurrent tumours, employing Oxford Nanopore Technologies (ONT) for sequencing. Our investigation focused on mtDNA extracted from blood and tumour tissues of three dogs, aiming to pinpoint polymorphisms, mutations, and heteroplasmy levels that could influence mitochondrial function in cancer pathogenesis. Notably, we observed the presence of mutations in the D-loop region, especially in the VNTR region, which may be crucial for mitochondrial replication, transcription, and genome stability, suggesting its potential role in cancer progression.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!