We present a novel approach to reverse Monte Carlo (RMC) modeling, SpecSwap-RMC, specifically applicable to structure modeling based on properties that require significant computer time to evaluate. In this approach pre-computed property data from a discrete set of local configurations are used and the configuration space is expressed in this basis. Atomistic moves are replaced with swap moves of contributions to a sample set representing the state of the simulated system. We demonstrate the approach by fitting jointly and separately the EXAFS signal and x-ray absorption spectrum (XAS) of ice Ih using a SpecSwap sample set of 80 configurations from a library of 1382 local structures with associated pre-computed spectra. As an additional demonstration we compare SpecSwap and FEFFIT fits of EXAFS data on crystalline copper, finding excellent agreement. SpecSwap-RMC thus extends RMC structure modeling to any property that can be computed from a structure irrespective of computational expense, but at the cost of a reduced configuration space. The method is general enough that it can be applied to any sets of computed properties, not necessarily limited to structure determination.

Download full-text PDF

Source
http://dx.doi.org/10.1088/0953-8984/22/13/135001DOI Listing

Publication Analysis

Top Keywords

reverse monte
8
monte carlo
8
discrete set
8
set local
8
local configurations
8
structure modeling
8
configuration space
8
sample set
8
specswap-rmc novel
4
novel reverse
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!