Probing surface and interface structure using optics.

J Phys Condens Matter

School of Physics, Trinity College Dublin, Dublin 2, Republic of Ireland.

Published: March 2010

Optical techniques for probing surface and interface structure are introduced and recent developments in the field are discussed. These techniques offer significant advantages over conventional surface probes: all pressure ranges of gas-condensed matter interfaces are accessible and liquid-liquid, liquid-solid and solid-solid interfaces can be probed, due to the large penetration depth of the optical radiation. Sensitivity and discrimination from the bulk are the two challenges facing optical techniques in probing surface and interface structure. Where instrumental improvements have resulted in enhanced sensitivity, conventional optical techniques can be used to characterize heterogeneous adsorbed layers on a substrate, often with sub-monolayer resolution. Nanoscale lateral resolution is possible using scanning near-field optics. A separate class of techniques, which includes reflection anisotropy spectroscopy, and nonlinear optical probes such as second-harmonic and sum-frequency generation, uses the difference in symmetry between the bulk and the surface or interface to suppress the bulk contribution. A perspective is presented of likely future developments in this rapidly expanding field.

Download full-text PDF

Source
http://dx.doi.org/10.1088/0953-8984/22/8/084018DOI Listing

Publication Analysis

Top Keywords

surface interface
16
probing surface
12
interface structure
12
optical techniques
12
techniques probing
8
optical
5
techniques
5
interface
4
structure optics
4
optics optical
4

Similar Publications

Multienergy Barrier Anti-/Deicing Surface with Excellent Photothermal Effect.

ACS Appl Mater Interfaces

January 2025

Ministry of Education Key Laboratory for the Green Preparation and Application of Functional Materials, Hubei University, Wuhan 430062, People's Republic of China.

Superhydrophobic surfaces are considered to be an effective method for anti-icing, but passive anti-icing alone is not as effective as it should be, so it is crucial to develop effective anti-icing techniques. In this study, a photothermal anti-icing structure with multienergy barriers was designed by combining active and passive anti-icing technologies and prepared by a three-step method of laser etching, hydrothermal growth of nanostructures, and chemical modification based on the Cassie-Baxter-Wenzel transition theory. The experimental results show that the static water contact angle of the prepared surface is up to 160°, the sliding angle is less than 3.

View Article and Find Full Text PDF

Interfacial properties of whey protein hydrolysates monitored by quartz crystal microbalance with dissipation.

Int J Biol Macromol

January 2025

Key Laboratory of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, Harbin 150030, China; Food Laboratory of Zhongyuan, Luohe 462300, Henan, China; Key Laboratory of Infant Formula Food, State Administration for Market Regulation, Harbin 150030, China. Electronic address:

Whey protein hydrolysate (WPH) can be used to develop hypoallergenic foods. However, the stabilization mechanism of WPH-stabilized emulsion is not fully understood. Here, a real-time quartz crystal microbalance with dissipation monitoring (QCM-D) was used in conjunction with a rheometer to investigate the interfacial properties of WPH.

View Article and Find Full Text PDF

Hydrosilylation of porous silicon: Unusual possibilities and potential challenges.

Adv Colloid Interface Sci

January 2025

Department of Biological Science and Technology, China Medical University, Taiwan. Electronic address:

Among the many types of surface modifications on porous silicon (pSi), hydrosilylation stands out to be an important approach due to the formation of highly stable surface linkage through Si-C bonding. Since its conceptualization in 1998, hydrosilylation had gradually gained popularity for pSi surface modifications and had become an important approach for stabilizing pSi surfaces especially for biological applications. Over the past decade, significant advancements have been made in the hydrosilylation process for modifying porous silicon (pSi) surfaces.

View Article and Find Full Text PDF

Flexible multifunctional Janus film towards self-healing, self-adhesive and streachable EMI shielding.

J Colloid Interface Sci

January 2025

Shaanxi Key Laboratory of Chemical Additives for Industry, College of Chemistry and Chemical Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China. Electronic address:

As smart electronic devices proliferate rapidly, concerns about electromagnetic radiation have become more prominent. Traditional electromagnetic shielding materials typically use three-dimensional porous foams, carbon structures, and film materials as their substrates. However, as electronic devices become more miniaturized, integrated, and precise, the large volume and limited functionality of foam materials have constrained their applications.

View Article and Find Full Text PDF

Effects of Chemical Pretreatments of Wood Cellulose Nanofibrils on Protein Adsorption and Biological Outcomes.

ACS Appl Mater Interfaces

January 2025

Center of Translational Oral Research (TOR), Department of Clinical Dentistry, University of Bergen, Bergen 5009, Norway.

Wood-based nanocellulose is emerging as a promising nanomaterial in the field of tissue engineering due to its unique properties and versatile applications. Previously, we used TEMPO-mediated oxidation (TO) and carboxymethylation (CM) as chemical pretreatments prior to mechanical fibrillation of wood-based cellulose nanofibrils (CNFs) to produce scaffolds with different surface chemistries. The aim of the current study was to evaluate the effects of these chemical pretreatments on serum protein adsorption on 2D and 3D configurations of TO-CNF and CM-CNF and then to investigate their effects on cell adhesion, spreading, inflammatory mediator production , and the development of foreign body reaction (FBR) .

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!