Golli proteins, products of the myelin basic protein gene, function as a new type of modulator of intracellular Ca(2+) levels in oligodendrocyte progenitor cells (OPCs). Because of this, they affect a number of Ca(2+)-dependent functions, such as OPC migration and process extension. To examine further the Ca(2+) channels regulated by golli, we studied the store-operated Ca(2+) channels (SOCCs) in OPCs and acute brain slice preparations from golli knock-out and golli-overexpressing mice. Our results showed that pharmacologically induced Ca(2+) release from intracellular stores evoked a significant extracellular Ca(2+) entry after store depletion in OPCs. They also indicated that, under these pharmacological conditions, golli promoted activation of Ca(2+) influx by SOCCs in cultured OPCs as well as in tissue slices. The canonical transient receptor potential family of Ca(2+) channels (TRPCs) has been postulated to be SOCC subunits in oligodendrocytes. Using a small interfering RNA knockdown approach, we provided direct evidence that TRPC1 is involved in store-operated Ca(2+) influx in OPCs and that it is modulated by golli. Furthermore, our data indicated that golli is probably associated with TRPC1 at OPC processes. Additionally, we found that TRPC1 expression is essential for the effects of golli on OPC proliferation. In summary, our data indicate a key role for golli proteins in the regulation of TRPC-mediated Ca(2+) influx, a finding that has profound consequences for the regulation of multiple biological processes in OPCs. More important, we have shown that extracellular Ca(2+) uptake through TRPC1 is an essential component in the mechanism of OPC proliferation.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3076512PMC
http://dx.doi.org/10.1523/JNEUROSCI.4424-10.2011DOI Listing

Publication Analysis

Top Keywords

ca2+ channels
12
ca2+ influx
12
ca2+
10
golli
9
canonical transient
8
transient receptor
8
receptor potential
8
products myelin
8
myelin basic
8
basic protein
8

Similar Publications

Cardiomyocyte-specific Piezo1 deficiency mitigates ischemia-reperfusion injury by preserving mitochondrial homeostasis.

Redox Biol

December 2024

Innovation Research Center, Shandong University of Traditional Chinese Medicine, Jinan, 250307, China; Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China; The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, 510260, China; School of Biomedical Sciences, Faculty of Biological Sciences, University of Leeds, LS2 9JT, UK. Electronic address:

Ca overload and mitochondrial dysfunction play crucial roles in myocardial ischemia-reperfusion (I/R) injury. Piezo1, a mechanosensitive cation channel, is essential for intracellular Ca homeostasis. The objective of this research was to explore the effects of Piezo1 on mitochondrial function during myocardial I/R injury.

View Article and Find Full Text PDF

TMEM16A, a key calcium-activated chloride channel, is crucial for many physiological and pathological processes such as cancer, hypertension, and osteoporosis, etc. However, the regulatory mechanism of TMEM16A is poorly understood, limiting the discovery of effective modulators. Here, we unveil an allosteric gating mechanism by presenting a high-resolution cryo-EM structure of TMEM16A in complex with a channel inhibitor that we identified, Tamsulosin, which is resolved at 2.

View Article and Find Full Text PDF

Piperazine-based P2X4 receptor antagonists.

Arch Pharm (Weinheim)

January 2025

European Institute for Molecular Imaging (EIMI), University of Muenster, Muenster, Germany.

The P2X4 receptor (P2X4R), a ligand-gated ion channel activated by ATP, plays a critical role in neuroinflammation, chronic pain, and cancer progression, making it a promising therapeutic target. In this study, we explored the design and synthesis of piperazine-based P2X4R antagonists, building on the structural framework of paroxetine. A series of over 35 compounds were synthesized to investigate structure-activity relationships (SARs) in a Ca²⁺-flux assay for P2X4R antagonistic activity.

View Article and Find Full Text PDF

Montelukast potentiates the relaxing effect of nifedipine in the porcine myometrium.

Pol J Vet Sci

September 2024

Department of Pharmacology and Toxicology, Faculty of Veterinary Medicine, University of Warmia and Mazury in Olsztyn, Oczapowskiego 13, 10-718 Olsztyn, Poland.

This study analysed the influence of montelukast (MON), a cysteinyl leukotriene receptor antagonist, and nifedipine, an L-type voltage-gated Ca2+ channel blocker, on the contractility of the porcine uterine smooth muscle. Myometrial strips were collected from the sexually immature (n=8), cyclic (12-14 days of the oestrous cycle; n=8) and pregnant (27-28 days of pregnancy; n=8) gilts and stimulated with a) MON or nifedipine at concentrations of 10-8-10-4 M and b) increasing concentrations of nifedipine after previous administration of MON at a concentration of 10-4 M. The changes in the tension, amplitude and frequency of contractions were determined with the Hugo Sachs Elektronik equipment for measuring isometric contractions.

View Article and Find Full Text PDF

Objective: Ca overload of muscle fibers is one of the factors that secondarily aggravate the development of Duchenne muscular dystrophy (DMD). The purpose of this study is to evaluate the effects of the Ca channel modulator 2-aminoethoxydiphenyl borate (APB) on skeletal muscle pathology in dystrophin-deficient mice.

Methods: Mice were randomly divided into six groups: wild type (WT), WT+3 mg/kg APB, WT+10 mg/kg APB, , +3 mg/kg APB, +10 mg/kg APB.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!