The final steps of phenylalanine (Phe) biosynthesis in bacteria, fungi and plants can occur via phenylpyruvate or arogenate intermediates. These routes are determined by the presence of prephenate dehydratase (PDT, EC4.2.1.51), which forms phenylpyruvate from prephenate, or arogenate dehydratase (ADT, EC4.2.1.91), which forms phenylalanine directly from arogenate. We compared sequences from select yeast species to those of Arabidopsis thaliana. The in silico analysis showed that plant ADTs and yeast PDTs share many common features allowing them to act as dehydratase/decarboxylases. However, plant and yeast sequences clearly group independently conferring distinct substrate specificities. Complementation of the Saccharomyces cerevisiae pha2 mutant, which lacks PDT activity and cannot grow in the absence of exogenous Phe, was used to test the PDT activity of A. thaliana ADTs in vivo. Previous biochemical characterization showed that all six AtADTs had high catalytic activity with arogenate as a substrate, while AtADT1, AtADT2 and AtADT6 also had limited activity with prephenate. Consistent with these results, the complementation test showed AtADT2 readily recovered the pha2 phenotype after ∼6 days growth at 30 °C, while AtADT1 required ∼13 days to show visible growth. By contrast, AtADT6 (lowest PDT activity) and AtADT3-5 (no PDT activity) were unable to recover the phenotype. These results suggest that only AtADT1 and AtADT2, but not the other four ADTs from Arabidopsis, have functional PDT activity in vivo, showing that there are two functional distinct groups. We hypothesize that plant ADTs have evolved to use the arogenate route for Phe synthesis while keeping some residual PDT activity.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.plaphy.2011.02.010DOI Listing

Publication Analysis

Top Keywords

pdt activity
24
arabidopsis thaliana
8
plant adts
8
activity
8
atadt1 atadt2
8
pdt
7
arogenate
6
complementation pha2
4
yeast
4
pha2 yeast
4

Similar Publications

Photodynamic and photothermal bacteria targeting nanosystems for synergistically combating bacteria and biofilms.

J Nanobiotechnology

January 2025

Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai Jiao Tong University, 639 Zhizaoju Road, Shanghai, 200011, China.

The escalating hazards posed by bacterial infections underscore the imperative for pioneering advancements in next-generation antibacterial modalities and treatments. Present therapeutic methodologies are frequently impeded by the constraints of insufficient biofilm infiltration and the absence of precision in pathogen-specific targeting. In this current study, we have used chlorin e6 (Ce6), zeolitic imidazolate framework-8 (ZIF-8), polydopamine (PDA), and UBI peptide to formulate an innovative nanosystem meticulously engineered to confront bacterial infections and effectually dismantle biofilm architectures through the concerted mechanism of photodynamic therapy (PDT)/photothermal therapy (PTT) therapies, including in-depth research, especially for oral bacteria and oral biofilm.

View Article and Find Full Text PDF

Phytochemical-based nanosystems: recent advances and emerging application in antiviral photodynamic therapy.

Nanomedicine (Lond)

January 2025

Clinical Laboratory Science Section, Institute of Medical Science Technology, Universiti Kuala Lumpur, Kajang, Selangor, Malaysia.

Phytochemicals are typically natural bioactive compounds or metabolites produced by plants. Phytochemical-loaded nanocarrier systems, designed to overcome bioavailability limitations and enhance therapeutic effects, have garnered significant attention in recent years. The coronavirus disease 2019 (COVID-19) pandemic has intensified interest in the therapeutic application of phytochemicals to combat viral infections.

View Article and Find Full Text PDF

Inhibition of PDT-induced PGE2 surge for enhanced photo-immunotherapy.

Biomaterials

January 2025

College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou, Zhejiang, 310058, PR China; Zhejiang-California International Nanosystems Institute, Zhejiang University, Hangzhou, 310058, PR China; Hangzhou Institute of Innovative Medicine, Zhejiang University, Hangzhou, 310058, Zhejiang, PR China.

Nowadays, photodynamic therapy (PDT) offers a non-invasive tumor treatment with high safety profiles and minimal side effects, implying a promising clinical application for patients with malignant tumors. However, the lack of efficacy in metastasis and recurrence still notably limits its application. To solve this problem, one promising strategy is to improve the immune response activated by PDT.

View Article and Find Full Text PDF

The efficacy of immunotherapy in triple-negative breast cancer (TNBC) is significantly hindered by its low immunogenicity and immunosuppressive tumor microenvironment. Non-invasive photodynamic therapy (PDT) is increasingly recognized as a potential immunotherapeutic stimulant in the treatment of TNBC. However, photodynamic immunotherapy is constrained by tumor hypoxia and excessive inflammation suppression during the course of treatment.

View Article and Find Full Text PDF

Next-Generation Photosensitizers: Cyanine-Carborane Salts for Superior Photodynamic Therapy of Metastatic Cancer.

Angew Chem Int Ed Engl

January 2025

Michigan State University, Biochemistry and Molecular Biology, Biochemistry Building, 603 Wilson Rd, Lunt Lab, 48824, 48824, East Lansing, UNITED STATES OF AMERICA.

Photodynamic therapy (PDT) has emerged as a promising targeted treatment for cancer. However, current PDT is limited by low tissue penetration, insufficient phototoxicity (toxicity with light irradiation), and undesirable cytotoxicity (toxicity without light irradiation). Here, we report the discovery of cyanine-carborane salts as potent photosensitizers (PSs) that harness the near-infrared (NIR) absorbing [cyanine+] with the inertness of [carborane-].

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!