Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
The size-controllable and highly monodispersed cuboidal barium strontium titanate (BST) nanocrystals have been successfully synthesized through a glycothermal process with no mineralizers but oleic acid as growth-directing agent. The synthesized BST nanocrystals under different glycothermal conditions were structurally characterized by XRD, IR, FESEM, TEM and HRTEM and investigated with respect to the effects of key influencing factors including the amount of oleic acid, duration of glycothermal process and 1,4-butanediol/water volume ratio in the reaction media on the formation of BST nanocrystals and their size and morphological evolution. It has been found that the oleic acid incorporated into the glycothermal system plays a decisive role in promoting the formation of cuboidal nanocrystals. It allows the BST nanocrystals to form via a nucleation-growth mechanism instead of in situ reactions and the selective chemical adsorption of oleic acid molecules on the facets with lower plane indices of newly-built BST nuclei directs them to grow into uniform cuboidal BST nanocrystals. The duration of glycothermal reactions and the polarity of reaction media can remarkably affect the dynamic process of the formation of BST nanocrystals. These regularly-shaped and highly monodispersed nanocrystals show a spontaneity of self-assembling into 2D ordered architectures when they were dispersed in organic solvents like cyclohexane and droped onto a hydrophobic surface of substrates, which creates a chance for the ferroelectric oxide nanocrystals to self-assemble into nanoscale electronic devices.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jcis.2011.02.015 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!