To understand the stabilization, folding, and functional mechanisms of proteins, it is very important to understand the structural and thermodynamic properties of the molten globule state. In this study, the global structure of the acid molten globule state, which we call MG1, of horse cytochrome c at low pH and high salt concentrations was evaluated by solution X-ray scattering (SXS), dynamic light scattering, and circular dichroism measurements. MG1 was globular and slightly (3%) larger than the native state, N. Calorimetric methods, such as differential scanning calorimetry and isothermal acid-titration calorimetry, were used to evaluate the thermodynamic parameters in the transitions of N to MG1 and MG1 to denatured state D of horse cytochrome c. The heat capacity change, ΔC(p), in the N-to-MG1 transition was determined to be 2.56 kJ K(-1) mol(-1), indicating the increase in the level of hydration in the MG1 state. Moreover, the intermediate state on the thermal N-to-D transition of horse cytochrome c at pH 4 under low-salt conditions showed the same structural and thermodynamic properties of the MG1 state in both SXS and calorimetric measurements. The Gibbs free energy changes (ΔG) for the N-to-MG1 and N-to-D transitions at 15 °C were 10.9 and 42.2 kJ mol(-1), respectively.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/bi101806b | DOI Listing |
J Am Soc Mass Spectrom
January 2025
Department of Chemistry and Chemical Biology, Indiana University─Indianapolis, Indianapolis, Indiana 46202, United States.
Electrospray ionization mass spectrometry (ESI-MS) can retain intact protein structures, but details about partially folded and unfolded protein structures during and after introduction to the gas phase are elusive. Here we use ESI-MS with chemical cross-linkers to compare denatured cytochrome structures in both solution and gas phases. Solution phase cross-linking prior to ESI captures solution phase structures, while gas phase cross-linking through ion/ion reactions in the trap cell captures gas phase structures.
View Article and Find Full Text PDFJ Biol Inorg Chem
December 2024
Departamento de Fisiología, Biofísica y Neurociencias, Cinvestav, 07360, Mexico City, Mexico.
The rise of atmospheric oxygen as a result of photosynthesis in cyanobacteria and chloroplasts has transformed most environmental iron into the ferric state. In contrast, cells within organisms maintain a reducing internal milieu and utilize predominantly ferrous iron. Ferric reductases are enzymes that transfer electrons to ferric ions, either extracellularly or within endocytic vesicles, enabling cellular ferrous iron uptake through Divalent Metal Transporter 1.
View Article and Find Full Text PDFFoods
October 2024
State Key Laboratory of Animal Nutrition and Feeding, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Haidian District, Beijing 100193, China.
The authentication of milk and dairy products has great significance for food fraud. The present investigation entailed the development of a novel method that amalgamates the double-tube approach with multiplex real-time polymerase chain reaction (PCR) technology, incorporating TaqMan probes, to facilitate the high-throughput screening and detection of animal-derived constituents within milk and dairy products. Eight dairy-derived animal-specific primers and probes were designed for the mitochondrial () gene of eight dairy products, including cow, buffalo, yak, goat, sheep, horse, donkey, and camel.
View Article and Find Full Text PDFMater Today Bio
December 2024
Fudan University Clinical Research Center for Cell-based Immunotherapy & Department of Oncology, Fudan University Pudong Medical Center, Shanghai, 201399, China.
J Equine Sci
October 2024
National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Hokkaido 080-8555, Japan.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!