Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Transmit gain (B 1+) calibration is necessary for the adjustment of radiofrequency (RF) power levels to the desired flip angles. In proton MRI, this is generally an automated process before the actual scan without any user interaction. For other nuclei, it is usually time consuming and difficult, especially in the case of hyperpolarised MR. In the current work, transmit gain calibration was implemented on the basis of the Bloch-Siegert phase shift. From the same data, the centre frequency, line broadening and SNR could also be determined. The T(1) and B(0) insensitivity, and the wide range of B 1+ over which this technique is effective, make it well suited for nonproton applications. Examples are shown for hyperpolarised (13)C and (3)He applications.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/nbm.1657 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!