Here we introduce a new technique that probes voltage-dependent charge displacements of excitable membrane-bound proteins using extracellularly applied radio frequency (RF, 500 kHz) electric fields. Xenopus oocytes were used as a model cell for these experiments, and were injected with cRNA encoding Shaker B-IR (ShB-IR) K(+) ion channels to express large densities of this protein in the oocyte membranes. Two-electrode voltage clamp (TEVC) was applied to command whole-cell membrane potential and to measure channel-dependent membrane currents. Simultaneously, RF electric fields were applied to perturb the membrane potential about the TEVC level and to measure voltage-dependent RF displacement currents. ShB-IR expressing oocytes showed significantly larger changes in RF displacement currents upon membrane depolarization than control oocytes. Voltage-dependent changes in RF displacement currents further increased in ShB-IR expressing oocytes after ∼120 µM Cu(2+) addition to the external bath. Cu(2+) is known to bind to the ShB-IR ion channel and inhibit Shaker K(+) conductance, indicating that changes in the RF displacement current reported here were associated with RF vibration of the Cu(2+)-linked mobile domain of the ShB-IR protein. Results demonstrate the use of extracellular RF electrodes to interrogate voltage-dependent movement of charged mobile protein domains--capabilities that might enable detection of small changes in charge distribution associated with integral membrane protein conformation and/or drug-protein interactions.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3046147 | PMC |
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0017363 | PLOS |
Commun Biol
January 2025
Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, ON, Canada.
Species that coexist in hybrid zones sexually isolate through reproductive character displacement, a mechanism that favours divergence between species. In Drosophila, behavioural and physiological traits discourage heterospecific mating between species. Recently, social network analysis revealed flies produce strain-specific and species-specific social structures.
View Article and Find Full Text PDFAm J Sports Med
January 2025
Youth Physical Development Centre, Cardiff School of Sport and Health Sciences, Cardiff Metropolitan University, Cardiff, UK.
Background: Residual interlimb deficits after anterior cruciate ligament reconstruction (ACLR) can lead to functional maladaptation and increase the risk of reinjury. The tuck jump assessment (TJA) may offer a more effective evaluation of ACLR status as compared with traditional tasks owing to increased risk of altered landing mechanics, asymmetrical landing, and increased knee valgus attributed to the cyclical nature of the task. However, it remains unclear whether altered TJA kinetics resolve over time or persist through return-to-play phases of rehabilitation.
View Article and Find Full Text PDFR Soc Open Sci
January 2025
National Centre for Coastal Research (NCCR), Ministry of Earth Sciences (MoES), Chennai, India.
Tsunamis are massive waves generated by sudden water displacement on the ocean surface, causing devastation as they sweep across the coastlines, posing a global threat. The aftermath of the 2004 Indian Ocean tsunami led to the establishment of the Indian Tsunami Early Warning System (ITEWS). Predicting real-time tsunami heights and the resulting coastal inundation is crucial in ITEWS to safeguard the coastal communities.
View Article and Find Full Text PDFNano Lett
January 2025
Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou 215163, China.
Accurate and reliable quantification of disease-related biomolecules is essential for clinical diagnosis. In this study, a novel electrochemical approach is developed based on a target triggered DNA nanostructural switch from a hairpin dimer to a double-stranded wheel. During the process, electrochemical species get closer to the electrode interface, and the multiple intramolecular strand displacements are beneficial to low abundant target analysis.
View Article and Find Full Text PDFJ Lipid Res
January 2025
Finsen Laboratory, Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark; Biotech Research and Innovation Centre, University of Copenhagen, Copenhagen, Denmark. Electronic address:
Movement of lipoprotein lipase (LPL) from myocytes or adipocytes to the capillary lumen is essential for intravascular lipolysis and plasma triglyceride homeostasis-low LPL activity in the capillary lumen causes hypertriglyceridemia. The trans-endothelial transport of LPL depends on ionic interactions with GPIHBP1's intrinsically disordered N-terminal tail, which harbors two acidic clusters at positions 5-12 and 19-30. This polyanionic tail provides a molecular switch that controls LPL detachment from heparan sulfate proteoglycans (HSPGs) by competitive displacement.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!