Crotamine, a myotoxin from the venom of South American rattlesnake, is structurally related to β-defensins, antimicrobial peptides (AMPs) found in vertebrate animals. Here, we tested the antibacterial properties of crotamine and found that it killed several strains of Escherichia coli, with the MICs ranging from 25 to 100 μg ml⁻¹. Time-kill and bacterial membrane permeabilization assays revealed that killing of bacteria by crotamine occurred within 1 h and reached the maximum by 2 h. Additionally, the anti-E. coli activity of crotamine was completely abolished with 12.5 mM NaCl. Furthermore, the three intramolecular disulfide bonds of crotamine appeared dispensable for its antibacterial activity. The reduced form of crotamine was active against E. coli as well. However, crotamine showed no or weak activity up to 200 μg ml⁻¹ against other species of Gram-negative and Gram-positive bacteria. Crotamine showed no appreciable hemolytic activity to erythrocytes. Our studies revealed that crotamine is also an AMP that kills bacteria through membrane permeabilization. However, crotamine appears to have a narrow antibacterial spectrum, distinct from many classical β-defensins, reinforcing the notion that crotamine originated from the β-defensin gene lineage, but has undergone significant functional diversification.

Download full-text PDF

Source
http://dx.doi.org/10.1038/ja.2011.10DOI Listing

Publication Analysis

Top Keywords

crotamine
12
μg ml⁻¹
8
membrane permeabilization
8
bacteria crotamine
8
vitro antibacterial
4
antibacterial hemolytic
4
hemolytic activities
4
activities crotamine
4
crotamine small
4
small basic
4

Similar Publications

We evaluated the efficacy of freeze-dried Bothrops-Lachesis-Crotalus antivenom and liquid Crotalus antivenoms to neutralize Crotalus durissus ruruima (Cdr) venom (Roraima, Brazil) comparing with C. d. terrificus (Cdt) venom.

View Article and Find Full Text PDF

Animal venoms are natural products that have served as a source of novel molecules that have inspired novel drugs for several diseases, including for metabolic diseases such as type-2 diabetes and obesity. From venoms, toxins such as exendin-4 () and crotamine () have demonstrated their potential as treatments for obesity. Moreover, other toxins such as Phospholipases A and Disintegrins have shown their potential to modulate insulin secretion in vitro.

View Article and Find Full Text PDF

Insights into the mechanism of crotamine and potential targets involved in obesity-related metabolic pathways.

Comput Biol Med

October 2024

Tecnologico de Monterrey, Institute for Obesity Research, Ave. Eugenio Garza Sada Sur 2501, C.P. 64849 Monterrey, N.L, Mexico; Tecnologico de Monterrey, Escuela de Ingeniería y Ciencias, Ave. Eugenio Garza Sada Sur 2501, C.P. 64849 Monterrey, N.L, Mexico. Electronic address:

Crotamine (Ctm) is a peptide isolated from Crotalus durissus terrificus venom. This molecule has been demonstrated to diminish body weight gain and enhance browning in adipose tissue, glucose tolerance, and insulin sensitivity; hence, it has been postulated as an anti-obesogenic peptide. However, the mechanism to elicit the anti-obesogenic effects has yet to be elucidated.

View Article and Find Full Text PDF

This study investigated crotamine (CTA), a peptide derived from the venom of the South American rattlesnake Crotalus durissus terrificus, known for its exceptional cell penetration potential. The objective was to explore the antibacterial and antifungal activity of CTA, its ability to inhibit efflux pumps and evaluate the effectiveness of its pharmacological combination with antibiotics and antifungals. In microbiological assays, CTA in combination with antibiotics was tested against strains of S.

View Article and Find Full Text PDF

Over a century has passed since Alois Alzheimer first described Alzheimer's disease (AD), and since then, researchers have made significant strides in understanding its pathology. One key feature of AD is the presence of amyloid-β (Aβ) peptides, which form amyloid plaques, and therefore, it is a primary target for treatment studies. Naturally occurring peptides have garnered attention for their potential pharmacological benefits, particularly in the central nervous system.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!