A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Anomalous effective dimensionality of quantum gas adsorption near nanopores. | LitMetric

Anomalous effective dimensionality of quantum gas adsorption near nanopores.

J Phys Condens Matter

Physics Department, Pennsylvania State University, 104 Davey Laboratory, University Park, PA 16802, USA.

Published: August 2010

Three problems involving quasi-one-dimensional (1D) ideal gases are discussed. The simplest problem involves quantum particles localized within the 'groove', a quasi-1D region created by two adjacent, identical and parallel nanotubes. At low temperature (T), the transverse motion of the adsorbed gas, in the plane perpendicular to the axes of the tubes, is frozen out. Then, the low T heat capacity C(T) of N particles is that of a 1D classical gas: C(*)(T) = C(T)/(Nk(B)) --> 1/2. The dimensionless heat capacity C(*) increases when T ≥ 0.1T(x, y) (transverse excitation temperatures), asymptoting at C(*) = 2.5. The second problem involves a gas localized between two nearly parallel, co-planar nanotubes, with small divergence half-angle γ. In this case, too, the transverse motion does not contribute to C(T) at low T, leaving a problem of a gas of particles in a 1D harmonic potential (along the z axis, midway between the tubes). Setting ω(z) as the angular frequency of this motion, for T ≥ τ(z) ≡ ω(z)ħ/k(B), the behavior approaches that of a 2D classical gas, C(*) = 1; one might have expected instead C(*) = 1/2, as in the groove problem, since the limit γ ≡ 0 is 1D. For T << τ(z), the thermal behavior is exponentially activated, C(*) ∼ (τ(z)/T)(2)e(-τ(z)/T). At higher T (T ≈ ε(y)/k(B) ≡ τ(y) >> τ(z)), motion is excited in the y direction, perpendicular to the plane of nanotubes, resulting in thermal behavior (C(*) = 7/4) corresponding to a gas in 7/2 dimensions, while at very high T (T > ħω(x)/k(B) ≡ τ(x) >> τ(y)), the behavior becomes that of a D = 11/2 system. The third problem is that of a gas of particles, e.g. (4)He, confined in the interstitial region between four square parallel pores. The low T behavior found in this case is again surprising--that of a 5D gas.

Download full-text PDF

Source
http://dx.doi.org/10.1088/0953-8984/22/33/334206DOI Listing

Publication Analysis

Top Keywords

gas
9
problem involves
8
transverse motion
8
heat capacity
8
classical gas
8
problem gas
8
gas particles
8
problem
5
anomalous effective
4
effective dimensionality
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!