Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Three problems involving quasi-one-dimensional (1D) ideal gases are discussed. The simplest problem involves quantum particles localized within the 'groove', a quasi-1D region created by two adjacent, identical and parallel nanotubes. At low temperature (T), the transverse motion of the adsorbed gas, in the plane perpendicular to the axes of the tubes, is frozen out. Then, the low T heat capacity C(T) of N particles is that of a 1D classical gas: C(*)(T) = C(T)/(Nk(B)) --> 1/2. The dimensionless heat capacity C(*) increases when T ≥ 0.1T(x, y) (transverse excitation temperatures), asymptoting at C(*) = 2.5. The second problem involves a gas localized between two nearly parallel, co-planar nanotubes, with small divergence half-angle γ. In this case, too, the transverse motion does not contribute to C(T) at low T, leaving a problem of a gas of particles in a 1D harmonic potential (along the z axis, midway between the tubes). Setting ω(z) as the angular frequency of this motion, for T ≥ τ(z) ≡ ω(z)ħ/k(B), the behavior approaches that of a 2D classical gas, C(*) = 1; one might have expected instead C(*) = 1/2, as in the groove problem, since the limit γ ≡ 0 is 1D. For T << τ(z), the thermal behavior is exponentially activated, C(*) ∼ (τ(z)/T)(2)e(-τ(z)/T). At higher T (T ≈ ε(y)/k(B) ≡ τ(y) >> τ(z)), motion is excited in the y direction, perpendicular to the plane of nanotubes, resulting in thermal behavior (C(*) = 7/4) corresponding to a gas in 7/2 dimensions, while at very high T (T > ħω(x)/k(B) ≡ τ(x) >> τ(y)), the behavior becomes that of a D = 11/2 system. The third problem is that of a gas of particles, e.g. (4)He, confined in the interstitial region between four square parallel pores. The low T behavior found in this case is again surprising--that of a 5D gas.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1088/0953-8984/22/33/334206 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!