A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Rare earth-cobalt hard magnetic nanoparticles and nanoflakes by high-energy milling. | LitMetric

Rare earth-cobalt hard magnetic nanoparticles and nanoflakes by high-energy milling.

J Phys Condens Matter

Department of Physics and Astronomy, University of Delaware, Newark, DE 19716, USA.

Published: April 2010

High-energy ball milling has been shown to be a promising method for large-scale fabrication of rare earth-transition metal nanoparticles. In this work, we report crystallographically anisotropic SmCo(5), PrCo(5) and Sm(2)(Co, Fe)(17) nanoparticles (particle size smaller than 10 nm) obtained by surfactant-assisted ball milling and study their size and properties as a function of the milling conditions. By milling nanocrystalline precursor alloys, we obtained SmCo(5) platelets (flakes) approximately 100 nm thick with an aspect ratio as high as 10(2)-10(3). The unusual shape evolution of this brittle material is attributed to its increased plasticity in the nanocrystalline state. The nanoflakes are susceptible to re-crystallization annealing and exhibit a room-temperature coercivity of up to 19 kOe. The successful fabrication of rare earth-cobalt nanoparticles and ultra-thin flakes provides hope for the development of nanocomposite permanent magnets with an enhanced energy product.

Download full-text PDF

Source
http://dx.doi.org/10.1088/0953-8984/22/16/164213DOI Listing

Publication Analysis

Top Keywords

rare earth-cobalt
8
ball milling
8
fabrication rare
8
milling
5
earth-cobalt hard
4
hard magnetic
4
nanoparticles
4
magnetic nanoparticles
4
nanoparticles nanoflakes
4
nanoflakes high-energy
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!