We report detailed degradation and rejuvenation studies of AC electroluminescence (EL) of the phosphor ZnS:Cu,Cl, aiming to better understand the physical mechanisms that control EL emission. We find that the AC EL emission spectra vary considerably with the AC driving frequency but all spectra can be fit to a sum of four Gaussians. During degradation, although there is a large overall decrease in amplitude, the shape of the emission spectra measured at a given AC frequency does not change. Annealing the samples after they are significantly degraded can rejuvenate the phosphors with a maximum rejuvenation occurring (for fixed annealing times) near 180 °C. Further, these test cells can be degraded and rejuvenated multiple times. However studies at slightly higher annealing temperatures (240 °C) show significant thermal degradation and, perhaps more importantly, a change in the spectral shape; this likely indicates that two distinct mechanisms are then operative. In extended x-ray absorption fine structure (EXAFS) experiments we find that the CuS nanoprecipitates in the ZnS host (∼ 75% of the Cu is in the CuS precipitates) do not change significantly after the 240 °C anneal; these experiments also provide a more detailed comparison of the local structure about Cu in pure CuS, and in ZnS:Cu,Cl. In addition, the EXAFS experiments also place an upper limit on the fraction of possible interstitial Cu sites, proposed as a blue emission center, at less than 10%. The combined experiments place strong constraints on the mechanisms for degradation and rejuvenation and suggest that EL degradation is most likely caused by either Cu or Cl diffusion under high E-fields, while thermal diffusion at slightly elevated temperatures without E-fields present, re-randomizes the (isolated) dopant distributions. Higher T anneals appear to damage the sharp tips on the precipitates.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1088/0953-8984/22/5/055301 | DOI Listing |
J Cosmet Dermatol
January 2025
Division in Anatomy and Developmental Biology, Department of Oral Biology, Human Identification Research Institute, BK21 FOUR Project, Yonsei University College of Dentistry, Seoul, Korea.
Background: Hyaluronic acid (HA) fillers are commonly used in esthetic medicine for facial contouring and rejuvenation. However, complications such as overcorrection, vascular occlusion, and irregular filler distribution necessitate the use of hyaluronidase to dissolve the fillers. This study aimed to evaluate the efficacy of hyaluronidase in degrading different types of HA fillers and provide clinical guidelines for its use based on filler type, dosage, and application techniques.
View Article and Find Full Text PDFAesthetic Plast Surg
January 2025
Division of Plastic Surgery, Department of Surgery, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia.
Introduction: Hand rejuvenation addresses aging-related changes such as subcutaneous fat loss, skin degradation, and photodamage. Autologous fat transfer (AFT) has emerged as a promising treatment, offering durable volume augmentation and regenerative effects. This study aims to systematically review the evidence on the techniques, outcomes, and complications of AFT for hand rejuvenation.
View Article and Find Full Text PDFElife
January 2025
Centre for Oral Immunobiology and Regenerative Medicine, Institute of Dentistry, Queen Mary University of London, London, United Kingdom.
A combination of intermittent fasting and administering Wnt3a proteins to a bone injury can rejuvenate bone repair in aged mice.
View Article and Find Full Text PDFActa Biomater
January 2025
Beijing Institute of Ophthalmology, Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical University, Beijing 100005, China. Electronic address:
Limbal stem cell deficiency (LSCD) causes vision loss and is often treated by simple corneal epithelial cell transplantation with poor long-term efficiency. Here, we present a biomimetic bilayer limbal implant using digital light processing 3D printing technology with gelatin methacrylate (GelMA) and poly (ethylene glycol) diacrylate (PEGDA) bioinks containing corneal epithelial cells (CECs) and corneal stromal stem cells (CSSCs), which can transplant CECs and improve the limbal niche simultaneously. The GelMA/PEGDA hydrogel possessed robust mechanical properties to support surgical transplantation and had good transparency, suitable swelling and degradation rate as a corneal implant.
View Article and Find Full Text PDFPolymers (Basel)
December 2024
Key Laboratory for Special Area Highway Engineering of Ministry of Education, Chang'an University, South 2nd Ring Road Middle Section, Xi'an 710064, China.
Studying the mechanisms and effects of rejuvenators on SBS-modified bitumen is crucial for repairing degraded SBS and recycling aged SBS-modified bitumen (ASMB), thereby contributing to the sustainable development of bitumen pavements. This research examines the roles of mono-epoxy Alkyl (C12-C14) glycidyl ether (AGE) and di-epoxy 1,6-Hexanediol diglycidyl ether (HDE) under the catalysis of N,N-dimethyl benzyl amine (BDMA) in repairing degraded SBS chains. Aromatic oil (ORSMB)-, AGE-aromatic oil (ARSMB)-, and HDE-aromatic oil (HRSMB)-rejuvenated bitumen are analyzed for their chemical structures, physical properties, and rheological properties.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!