Magnetic and magnetoelastic properties of epitaxial SmFe2 thin film.

J Phys Condens Matter

Departamento de Magnetismo de Sólidos, Instituto de Ciencia de los Materiales de Aragón and Universidad de Zaragoza, Zaragoza, Spain.

Published: February 2010

We report on magnetic and magnetoelastic measurements for a 5000 Å (110) SmFe(2) thin film, which was successfully analyzed by means of a point charge model for describing the effect of the epitaxial growth in this kind of system. Some of the main conclusions of the Mössbauer and magnetoelastic results and the new magnetization results up to 5 T allow us to get a full description of the crystal electric field, exchange, and magnetoelastic behavior in this compound. So, new single-ion parameters are obtained for the crystal field interaction of samarium ions, A(4)(r(4)) = +755 K/ion and A(6)(r(6)) = -180 K/ion, and new single-ion magnetoelastic coupling B(γ,2) is approximately equal -200 MPa and B(ε,2) is approximately equal MPa, which represent the tetragonal and the in-plane shear deformations, respectively. Moreover, the new thermal behavior of the samarium magnetic moment, the exchange coupling parameter, and the magnetocrystalline anisotropy of the iron sublattice are obtained too. From these, the softening of the spin reorientation transition with respect to the bulk case could be accounted for.

Download full-text PDF

Source
http://dx.doi.org/10.1088/0953-8984/22/4/046004DOI Listing

Publication Analysis

Top Keywords

magnetic magnetoelastic
8
smfe2 thin
8
thin film
8
magnetoelastic properties
4
properties epitaxial
4
epitaxial smfe2
4
film report
4
report magnetic
4
magnetoelastic
4
magnetoelastic measurements
4

Similar Publications

Theory of giant magnetoelastic effect in soft systems.

Sci Adv

January 2025

Department of Bioengineering, University of California, Los Angeles, Los Angeles, CA 90095, USA.

Article Synopsis
  • The magnetoelastic effect, traditionally seen in metals since 1865, has recently been observed in soft matter, opening up new possibilities for energy and healthcare applications.
  • A theoretical framework has been developed to accurately interpret this effect across different soft system variations, including deformation modes and magnetization profiles.
  • This research reveals significant magnetoelastic phenomena, like magnetic pole reversal, and provides a solid foundation for further exploration and practical uses in soft matter systems.
View Article and Find Full Text PDF

Chiral Phonons Induced from Spin Dynamics via Magnetoelastic Anisotropy.

Phys Rev Lett

December 2024

International Center for Quantum Materials, School of Physics, Peking University, Beijing 100871, China.

Article Synopsis
  • The proposed mechanism generates chiral phononlike excitations through magnetoelastic couplings without needing magnetic fields or out-of-plane magnetization.
  • By analyzing a triangular lattice ferromagnet, the research reveals how lattice symmetry influences chirality, linking it to topological phonon classes.
  • The study suggests potential applications in spintronics and phononics, emphasizing the experimental viability of measuring phonon magnetization and thermal Hall conductivity in anisotropic magnets.
View Article and Find Full Text PDF

Autonomous phototaxis of hydrogel swimmers.

Proc Natl Acad Sci U S A

December 2024

Department of Materials Science and Engineering, Northwestern University, Evanston, IL 60208.

Article Synopsis
  • Researchers are working on creating synthetic soft materials that mimic living organisms' behaviors, specifically those that can sense and adapt to their environments.
  • This study focuses on a hybrid hydrogel made from peptide amphiphile nanofibers and photoresponsive materials that can swim using aligned ferromagnetic nanowires and respond to light.
  • The findings showcase the potential of using hybrid polymers that combine supramolecular and covalent structures to develop intelligent systems that can autonomously react to their surroundings.
View Article and Find Full Text PDF

Glass-coated microwires exhibiting magnetic bistability have garnered significant attention as promising wireless sensing elements, primarily due to their rapid magnetization switching capabilities. These microwires consist of a metallic core with diameter , encased in a glass coating, with a total diameter . In this study, we investigated how the dimensions of both components and their ratio (/) influence the magnetization reversal behavior of Fe-based microwires.

View Article and Find Full Text PDF

Magnetic 2D materials enable interesting tuning options of magnetism. As an example, the van der Waals material FePS, a zig-zag-type intralayer antiferromagnet, exhibits very strong magnetoelastic coupling due to the different bond lengths along different ferromagnetic and antiferromagnetic coupling directions enabling elastic tuning of magnetic properties. The likely cause of the length change is the intricate competition between direct exchange of the Fe atoms and superexchange via the S and P atoms.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!