We have investigated defect generation in soda-lime silicate and iron-doped soda-lime silicate glasses by excimer laser irradiation in order to apply coloration due to radiation-induced defects as a coloring technique for practical glass products. The laser irradiation generated various kinds of defects, i.e., non-bridging oxygen hole centers (NBOHCs), E' centers, and trapped electron centers, as does x-ray and γ-ray irradiation. The amounts of generated NBOHCs, monitored by the absorption intensity, increased at first with the irradiation time for both the ArF and XeF lasers, and eventually became saturated. The saturated values for the ArF laser irradiation were almost the same regardless of the laser intensity, whereas those for the XeF laser irradiation were dependent on the intensity; a higher intensity generated a larger amount of NBOHCs. From the comparison of the energies of the photon and the absorption edge of the soda-lime silicate glasses, the defect generation reactions were expected to be one-photon and two-photon processes for the ArF and XeF lasers, respectively. In order to explain the defect generation behavior, we used a simple kinetic model in which the NBOHCs are reversibly generated and annihilated through the photo-reaction. The model includes a stretched exponential function, which is often observed for reactions occurring in amorphous materials. The dependences of the amounts of the generated NBOHCs on the irradiation time and intensity of the laser pulses derived from the model were consistent with the experimental results.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1088/0953-8984/22/4/045901 | DOI Listing |
Lasers Med Sci
January 2025
Hospital for Skin Diseases, Shandong First Medical University, Jinan, China.
To investigate the efficacy and safety of picosecond (PS) and nanosecond (NS) 1064-nm neodymium-doped yttrium aluminum garnet (Nd: YAG) laser in treating Café-au-lait macules (CALMs). We retrospectively analyzed the medical records of patients with CALMs, who were treated with PS or NS 1064-nm lasers from January 2020 to January 2022. The efficacy was determined based on the before and after pictures by two independent investigators.
View Article and Find Full Text PDFLasers Med Sci
January 2025
Cornell University, Ithaca, USA.
Purpose: Photobiomodulation (PBM) is a non-invasive therapeutic procedure that consists of irradiating a local area of the skin with red and near-infrared lasers or light emitting diodes (LEDs). Local PBM has been studied as a method to improve exercise performance and recovery. This review aims to evaluate the efficacy of whole-body PBM for exercise performance and recovery, comparing its findings to the established effects of localized PBM.
View Article and Find Full Text PDFAnal Chem
January 2025
Guangdong Key Laboratory of Biomedical Measurements and Ultrasound Imaging, School of Biomedical Engineering, Shenzhen University Medical School, Shenzhen University, Shenzhen 518060, P. R. China.
Understanding the molecular energy metabolism of single cells in the nucleolus stress response induced by mild-photothermal therapy (mPTT) is of great importance for investigating the photothermal lethal mechanism. Herein, we successfully fabricated a "turn-on"-type fluorescent nanoprobe based on the fluorescently labeled aptamers (FAM-ATP-apt and Cy3-GTP-apt) and TiCT MXene. When the adapters on the nanoprobes bonded to intracellular ATP and GTP, the fluorescence of the nanoprobes was restored.
View Article and Find Full Text PDFJ Mater Chem B
January 2025
National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu, 610065, P. R. China.
Wound healing is a complex and dynamic biological process that requires meticulous management to ensure optimal outcomes. Traditional wound dressings, such as gauze and bandages, although commonly used, often fall short in their frequent need for replacement, lack of real-time monitoring and absence of anti-inflammatory and antibacterial properties, which can lead to increased risk of infection and delayed healing. Here, we address these limitations by introducing an innovative hydrogel dressing, named PHDNN6, to combine wireless Bluetooth temperature monitoring and light-triggered nitric oxide (NO) release to enhance wound healing and management.
View Article and Find Full Text PDFJ Nanobiotechnology
January 2025
School of Medical Imaging, Xuzhou Medical University, Xuzhou, 221004, China.
With the progress of atherosclerosis (AS), the arterial lumen stenosis and compact plaque structure, the thickening intima and the narrow gaps between endothelial cells significantly limit the penetration efficiency of nanoprobe to plaque, weakening the imaging sensitivity and therapy efficiency. Thus, in this study, a HO-NIR dual-mode nanomotor, Gd-doped mesoporous carbon nanoparticles/Pt with rapamycin (RAPA) loading and AntiCD36 modification (Gd-MCNs/Pt-RAPA-AC) was constructed. The asymmetric deposition of Pt on Gd-MCNs catalyzed HO at the inflammatory site to produce O, which could promote the self-motion of the nanomotor and ease inflammation microenvironment of AS plaque.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!