Ab initio electronic structures of rhombohedral and cubic HgXO3 (X = Ti, Pb).

J Phys Condens Matter

Department fur Geo- und Umweltwissenschaften, Sektion Kristallographie, Ludwig Maximilians Universität, München, Germany.

Published: February 2010

First-principles calculations were performed for orthorhombic HgO, rhombohedral and cubic phases of HgTiO(3) (HTO) and HgPbO(3) (HPO). The calculations show that in the rhombohedral phase HTO is a direct gap insulator with a gap of ∼1.6 eV. The rhombohedral phase of HPO, on the other hand, shows a weak metallic character. The results provide an explanation for the electrical properties of these compounds. The cubic phases of HTO and HPO are invariably metallic in nature, thereby suggesting that for HTO the rhombohedral-cubic transition must also be accompanied by a change in the electrical state. Examination of the electronic density of states of these systems revealed no significant on-site mixing of Hg 5d and Hg 6s states in any of these materials.

Download full-text PDF

Source
http://dx.doi.org/10.1088/0953-8984/22/4/045504DOI Listing

Publication Analysis

Top Keywords

rhombohedral cubic
8
cubic phases
8
rhombohedral phase
8
initio electronic
4
electronic structures
4
rhombohedral
4
structures rhombohedral
4
cubic hgxo3
4
hgxo3 first-principles
4
first-principles calculations
4

Similar Publications

How does goldene stack?

Mater Horiz

January 2025

Department of Applied Physics and Center for Computational Engineering and Sciences, State University of Campinas, Campinas, São Paulo, Brazil.

The recent synthesis of goldene, a 2D atomic monolayer of gold, has opened new avenues in exploring novel materials. However, the question of when multilayer goldene transitions into bulk gold remains unresolved. This study used density functional theory calculations to address this fundamental question.

View Article and Find Full Text PDF

Discovery and Characterization of a Metastable Cubic Interstitial Nickel-Carbon System with an Expanded Lattice.

ACS Nano

January 2025

Faculty III Process Sciences, Institute of Materials Science and Technology, Chair of Advanced Ceramic Materials, Technische Universität Berlin, Straße des 17. Juni 135, 10623 Berlin, Germany.

Metastable, , kinetically favored but thermodynamically not stable, interstitial solid solutions of carbon in iron are well-understood. Carbon can occupy the interstitial atoms of the host metal, altering its properties. Alloying of the host metal results in the stabilization of the FeC phases, widening its application.

View Article and Find Full Text PDF

Stable Sb exhibits a rhombohedral structure, often referred to as distorted primitive cubic, with each Sb atom having three short and three longer first neighbor bonds. However, this crystal structure can also be interpreted as being layered, putting emphasis on only three short first neighbor bonds. Therefore, temperature-dependent extended X-ray absorption fine structure (EXAFS) spectroscopy is carried out at the Sb K-edge in order to obtain more detailed information on local structural and vibrational properties.

View Article and Find Full Text PDF

Performance and Stability of Corundum-type InO Catalyst for Carbon Dioxide Hydrogenation to Methanol.

Angew Chem Int Ed Engl

January 2025

Technische Universität Berlin, Faculty III Process Sciences, Institute of Materials Science and Technology, Chair of Advanced Ceramic Materials, Straße des 17. Juni 135, 10623, Berlin, Germany.

Carbon dioxide hydrogenation to methanol is a key chemical reaction to store energy in chemical bonds, using carbon dioxide as an energy sink. Indium oxide is amongst the most promising candidates for replacing the copper and zinc oxide catalyst, which is industrially applied for syngas mixtures but less idoneous for educts with carbon dioxide due to instability reasons. The polymorph of indium oxide and the operating conditions remain to be optimized for optimal and stable performance.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!