We study the magnetization dynamics of a single molecular nanomagnet driven by static and variable magnetic fields within a classical treatment. The underlying analysis is valid for a regime where the energy is definitely lower than the anisotropy barrier, but still a substantial number of states are excited. We find the phase space to contain a separatrix line. Solutions far from it are oscillatory whereas the separatrix solution is of a soliton type. States near the separatrix are extremely sensitive to small perturbations, a fact that we utilize in obtaining dynamically induced magnetization switching. A new type of magnetization switching is proposed.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1088/0953-8984/22/3/036002 | DOI Listing |
Chem Commun (Camb)
January 2025
F. Joseph Halcomb III, M. D. Department of Biomedical Engineering, University of Kentucky, Lexington, Kentucky 40536, USA.
Magnetic nanoparticles (MNPs) are highly versatile nanomaterials in nanomedicine, owing to their diverse magnetic properties, which can be tailored through variations in size, shape, composition, and exposure to inductive magnetic fields. Over four decades of research have led to the clinical approval or ongoing trials of several MNP formulations, fueling continued innovation. Beyond traditional applications in drug delivery, imaging, and cancer hyperthermia, MNPs have increasingly advanced into molecular medicine.
View Article and Find Full Text PDFPhys Chem Chem Phys
January 2025
Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Materials Chemistry and Service Failure, Hubei Key Laboratory of Bioinorganic Chemistry and Materia Medica, Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, China.
A full-scale structural search was performed using density functional theory calculations and a universal structural prediction evolutionary algorithm. This produced a lowest energy two-dimensional (2D) CoB structure. The CoB-1 global minimum structure has unusual inverse double sandwich features.
View Article and Find Full Text PDFAdv Mater
January 2025
Instituto de Ciencia Molecular (ICMol), Universitat de València, Catedrático José Beltrán 2, Paterna, 46980, Spain.
Twisting 2D van der Waals magnets allows the formation and control of different spin-textures, as skyrmions or magnetic domains. Beyond the rotation angle, different spin reversal processes can be engineered by increasing the number of magnetic layers forming the twisted van der Waals heterostructure. Here, pristine monolayers and bilayers of the A-type antiferromagnet CrSBr are considered as building blocks.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
January 2025
William H. Miller III Department of Physics and Astronomy, The Johns Hopkins University, Baltimore, MD 21218.
Introducing an experimental technique of time-resolved inelastic neutron scattering (TRINS), we explore the time-dependent effects of resonant pulsed microwaves on the molecular magnet CrFPiv. The octagonal rings of magnetic Cr atoms with antiferromagnetic interactions form a singlet ground state with a weakly split triplet of excitations at 0.8 meV.
View Article and Find Full Text PDFRev Sci Instrum
December 2024
School of Chemistry, The University of Manchester, Manchester M13 9PL, United Kingdom.
Electron spin resonance (ESR) is a powerful tool for characterizing and manipulating spin systems, but commercial ESR spectrometers can be inflexible and designed to work in narrow frequency bands. This work presents a spectrometer built from off-the-shelf parts that, when coupled with easy-to-design resonators, enables ESR over a broad frequency range, including at frequencies outside the standard bands. It can operate at either a single frequency or at two frequencies simultaneously.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!