Stacking faults and metallic properties for the triangular lattice system CoO(2), which has basically three oxygen layers with a prismatic oxygen environment between the layers, have been explored mainly through measurements of nuclear magnetic and quadrupole resonance. A significant distribution of the quadrupole frequency for (59)Co nuclei, due to stacking faults and short atomic coherence, is found. The spin dynamics is successfully understood in terms of the relaxation mechanism for a weakly correlated metal system.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1088/0953-8984/22/3/035602 | DOI Listing |
J Am Chem Soc
January 2025
Center for Electron Microscopy, South China University of Technology, Guangzhou 511436, China.
Adsorption behaviors are typically examined through adsorption isotherms, which measure the average adsorption amount as a function of partial pressure or time. However, this method is incapable of identifying inhomogeneities across the adsorbent, which may occur in the presence of strong intermolecular interactions of the adsorbate. In this study, we visualize the adsorption of molecular iodine (I) in the metal-organic framework material MFM-300(Sc) using high-resolution scanning transmission electron microscopy (STEM).
View Article and Find Full Text PDFScience
January 2025
Center for Advancing Materials Performance from the Nanoscale (CAMP-Nano), Hysitron Applied Research Center in China (HARCC) and Center for Alloy Innovation and Design (CAID), State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an, China.
Higher strength and higher ductility are desirable for structural materials. However, ultrastrong alloys inevitably show decreased strain-hardening capacity, limiting their uniform elongation. We present a supranano (<10 nanometers) and short-range ordering design for grain interiors and grain boundary regions, respectively, in fine-grained alloys based on vanadium, cobalt, and nickel, with additions of tungsten, copper, aluminum, and boron.
View Article and Find Full Text PDFMater Res Lett
October 2024
Mechanics & Materials Lab, Department of Mechanical and Process Engineering, ETH Zürich, Zürich, Switzerland.
Twinning significantly affects the deformation behavior of hexagonal close-packed Mg, so a thorough understanding of twin nucleation and growth mechanisms is required for enhancing the properties of Mg-based materials. The commonly observed tension twins have been traditionally linked to 〈c + a〉 dislocation dissociation, which results in zonal dislocations with large Burgers vectors several times that of a single twinning dislocation and some residual dislocations. Contrarily, our molecular dynamics simulations reveal twin nucleation from pyramidal II stacking faults through atomic shuffling without shear displacements.
View Article and Find Full Text PDFJ Am Chem Soc
January 2025
Zhejiang Key Laboratory of Excited-State Energy Conversion and Energy Storage, and Department of Chemistry, Zhejiang University, Hangzhou 310058, China.
Here, we demonstrate that monocrystalline (free of stacking faults) wurtzite CdSe nanocrystals with monodisperse size, shape (dots, rods, or wires), and facet structure are synthesized in both strongly confined and weakly confined size regimes. Considering the unique -axis of wurtzite CdSe, we introduce a new type of neutral ligand (e.g.
View Article and Find Full Text PDFNat Nanotechnol
January 2025
State Key Laboratory for Mesoscopic Physics, School of Physics, Peking University, Beijing, China.
Interfacial ferroelectricity emerges in non-centrosymmetric heterostructures consisting of non-polar van der Waals (vdW) layers. Ferroelectricity with concomitant Coulomb screening can switch topological currents or superconductivity and simulate synaptic response. So far, it has only been realized in bilayer graphene moiré superlattices, posing stringent requirements to constituent materials and twist angles.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!