Stacking faults and metallic properties for the triangular lattice system CoO(2), which has basically three oxygen layers with a prismatic oxygen environment between the layers, have been explored mainly through measurements of nuclear magnetic and quadrupole resonance. A significant distribution of the quadrupole frequency for (59)Co nuclei, due to stacking faults and short atomic coherence, is found. The spin dynamics is successfully understood in terms of the relaxation mechanism for a weakly correlated metal system.

Download full-text PDF

Source
http://dx.doi.org/10.1088/0953-8984/22/3/035602DOI Listing

Publication Analysis

Top Keywords

stacking faults
12
faults metallic
8
metallic properties
8
properties triangular
8
triangular lattice
8
microscopic evidence
4
evidence stacking
4
lattice coo2
4
coo2 three-layer
4
three-layer structure
4

Similar Publications

Adsorption behaviors are typically examined through adsorption isotherms, which measure the average adsorption amount as a function of partial pressure or time. However, this method is incapable of identifying inhomogeneities across the adsorbent, which may occur in the presence of strong intermolecular interactions of the adsorbate. In this study, we visualize the adsorption of molecular iodine (I) in the metal-organic framework material MFM-300(Sc) using high-resolution scanning transmission electron microscopy (STEM).

View Article and Find Full Text PDF

Ductilization of 2.6-GPa alloys via short-range ordered interfaces and supranano precipitates.

Science

January 2025

Center for Advancing Materials Performance from the Nanoscale (CAMP-Nano), Hysitron Applied Research Center in China (HARCC) and Center for Alloy Innovation and Design (CAID), State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an, China.

Higher strength and higher ductility are desirable for structural materials. However, ultrastrong alloys inevitably show decreased strain-hardening capacity, limiting their uniform elongation. We present a supranano (<10 nanometers) and short-range ordering design for grain interiors and grain boundary regions, respectively, in fine-grained alloys based on vanadium, cobalt, and nickel, with additions of tungsten, copper, aluminum, and boron.

View Article and Find Full Text PDF

Unconventional twinning assisted by pyramidal II stacking faults.

Mater Res Lett

October 2024

Mechanics & Materials Lab, Department of Mechanical and Process Engineering, ETH Zürich, Zürich, Switzerland.

Twinning significantly affects the deformation behavior of hexagonal close-packed Mg, so a thorough understanding of twin nucleation and growth mechanisms is required for enhancing the properties of Mg-based materials. The commonly observed tension twins have been traditionally linked to 〈c + a〉 dislocation dissociation, which results in zonal dislocations with large Burgers vectors several times that of a single twinning dislocation and some residual dislocations. Contrarily, our molecular dynamics simulations reveal twin nucleation from pyramidal II stacking faults through atomic shuffling without shear displacements.

View Article and Find Full Text PDF

Nucleation and Growth of Monodisperse and Monocrystalline Wurtzite CdSe Nanocrystals: Zinc Alkanoates as Neutral Ligands.

J Am Chem Soc

January 2025

Zhejiang Key Laboratory of Excited-State Energy Conversion and Energy Storage, and Department of Chemistry, Zhejiang University, Hangzhou 310058, China.

Here, we demonstrate that monocrystalline (free of stacking faults) wurtzite CdSe nanocrystals with monodisperse size, shape (dots, rods, or wires), and facet structure are synthesized in both strongly confined and weakly confined size regimes. Considering the unique -axis of wurtzite CdSe, we introduce a new type of neutral ligand (e.g.

View Article and Find Full Text PDF

Ferroelectricity with concomitant Coulomb screening in van der Waals heterostructures.

Nat Nanotechnol

January 2025

State Key Laboratory for Mesoscopic Physics, School of Physics, Peking University, Beijing, China.

Interfacial ferroelectricity emerges in non-centrosymmetric heterostructures consisting of non-polar van der Waals (vdW) layers. Ferroelectricity with concomitant Coulomb screening can switch topological currents or superconductivity and simulate synaptic response. So far, it has only been realized in bilayer graphene moiré superlattices, posing stringent requirements to constituent materials and twist angles.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!