We have studied electron magnetic resonance (EMR) in ferromagnetic-metal nanoparticle systems which show promise as a component of left-handed metamaterials. Metallic Ni nanoparticles of about 8 nm in diameter are embedded in polymer films. When the average distance between the nanoparticles is decreased, we observed that the EMR signal shifts and broadens. Theoretical analyses based on micromagnetics simulation confirm that the shift of the signal is traced back to an increase in the magnetic dipole field in the nanoparticle systems due to the decrease in interparticle distance. Moreover, the simulation reveals that the perpendicular component of the dipolar field causes the broadening of the signal. The present study demonstrates that a dynamic analysis of the magnetization, with an explicit treatment of the magnetic dipole interactions, is necessary for a thorough understanding of the EMR and magnetic permeability of interacting nanoparticle systems.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1088/0953-8984/22/1/016005 | DOI Listing |
ACS Nano
January 2025
Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore 117585, Singapore.
Metal nanoclusters (NCs), owing to their atomic precision and unique molecule-like properties, have gained widespread attention for applications ranging from catalysis to bioimaging. In recent years, proteins, with their hierarchical structures and diverse functionalities, have emerged as good candidates for functionalizing metal NCs, rendering metal NC-protein conjugates with combined and even synergistically enhanced properties featured by both components. In this Perspective, we explore key questions regarding why proteins serve as complementary partners for metal NCs, the methodologies available for conjugating proteins with metal NCs, and the characterization techniques necessary to elucidate the structures and interactions within this emerging bionano system.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
January 2025
Department of Chemical Engineering, Stanford University, Stanford, CA 94305.
The crowded bacterial cytoplasm is composed of biomolecules that span several orders of magnitude in size and electrical charge. This complexity has been proposed as the source of the rich spatial organization and apparent anomalous diffusion of intracellular components, although this has not been tested directly. Here, we use biplane microscopy to track the 3D motion of self-assembled bacterial genetically encoded multimeric nanoparticles (bGEMs) with tunable size (20 to 50 nm) and charge (-3,240 to +2,700 e) in live cells.
View Article and Find Full Text PDFSmall
January 2025
Department of Materials Physics and New Energy Device School of Materials Science and Engineering, Hefei University of Technology, Hefei, 230009, China.
Smart grippers serving as soft robotics have garnered extensive attentions owing to their great potentials in medical, biomedical, and industrial fields. Though a diversity of grippers that account for manipulating the small objects (e.g.
View Article and Find Full Text PDFVaccines (Basel)
January 2025
Vaccine Center, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing 211198, China.
Background/objectives: Approved mRNA vaccines commonly use sequences modified with pseudouridine to enhance translation efficiency and mRNA stability. However, this modification can result in ribosomal frameshifts, reduced immunogenicity, and higher production costs. This study aimed to explore the potential of unmodified mRNA sequences for varicella-zoster virus (VZV) and evaluate whether codon optimization could overcome the limitations of pseudouridine modification.
View Article and Find Full Text PDFVaccines (Basel)
January 2025
Division of Infectious Diseases, Cincinnati Children's Hospital Medical Center, 3333 Burnet Avenue, Cincinnati, OH 45229, USA.
Background: Noroviruses, which cause epidemic acute gastroenteritis, and parasites, which lead to malaria, are two infectious pathogens that pose threats to public health. The protruding (P) domain of norovirus VP1 and the αTSR domain of the circumsporozoite protein (CSP) of sporozoite are the glycan receptor-binding domains of the two pathogens for host cell attachment, making them excellent targets for vaccine development. Modified norovirus P domains self-assemble into a 24-meric octahedral P nanoparticle (P NP).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!