Carbon dioxide (CO(2)) is the gas most commonly used to inflate the body cavities during 'keyhole' surgery (e.g. laparoscopy and thoracoscopy). However, CO(2) can be absorbed, leading to increased arterial CO(2) and increased CO(2) elimination from the lungs. These increases in CO(2) are observed following a wide variety of procedures both in adults and in infants and children. Although it is usually assumed that increases in arterial or end-tidal CO(2) directly reflect absorption of CO(2) from body cavities, this is not necessarily true, as either increases in metabolically produced CO(2) or respiratory compromise making it more difficult to eliminate CO(2) could also be responsible for these changes. Recently, a new technique has been introduced which enables absorbed CO(2) to be distinguished from metabolic CO(2).

Download full-text PDF

Source
http://dx.doi.org/10.1088/1752-7155/3/4/047005DOI Listing

Publication Analysis

Top Keywords

co2
11
carbon dioxide
8
body cavities
8
dioxide absorption
4
absorption elimination
4
elimination breath
4
breath minimally
4
minimally invasive
4
invasive surgery
4
surgery carbon
4

Similar Publications

Chronic hyperoxia during early postnatal development depresses breathing when neonatal rats are returned to room air and causes long-lasting attenuation of the hypoxic ventilatory response (HVR). In contrast, little is known about the control of breathing of juvenile or adult mammals after chronic exposure to moderate hyperoxia later in life. Therefore, Sprague-Dawley rats were exposed to 60% O for 7 days (juveniles) or for 4 and 14 days (adults) and ventilation was measured by whole-body plethysmography immediately after the exposure or following a longer period of recovery in room air.

View Article and Find Full Text PDF

A novel nanocomposite magnetic hydrogel was synthesized based on κ-carrageenan, acrylic acid, and activated carbon as an absorbent for removing heavy metal ions from aqueous solution. FT-IR spectroscopy, thermogravimetric analysis (TGA), scanning electron microscopy (SEM), transmission electron microscopy (TEM), and vibration sample magnetometer (VSM) were employed to confirm the structure of the nanocomposite hydrogels. The effects of contact time, pH, particle size, temperature, and metal ion concentration on the metal ion adsorption were investigated.

View Article and Find Full Text PDF

Estimation method for karst carbon sinks on the basis of a concentration prediction model.

J Environ Manage

December 2024

School of Geoscience and Technology, Southwest Petroleum University, Chengdu, 610500, China. Electronic address:

Karstification can reduce the CO concentration in the atmosphere/soil. Accurate estimation of karst carbon sinks is crucial for the study of global climate change. In this study, the Lijiang River Basin was taken as the research area.

View Article and Find Full Text PDF

Ferrous oxalate (FeCO)-based composite has been recognized as an eminent catalyst for Cr(III)-ethylenediamine tetraacetic acid (Cr(III)-EDTA) decomplexation. However, their practical application has been limited by low cycling capacity and an ambiguous mechanism. In this research, a composite catalyst consisting of biotite loaded with nano FeCO (CFS90) was prepared directly from iron-containing silicate tailing.

View Article and Find Full Text PDF

Mildly acidic pH boosts up CO conversion to isobutyrate in H driven gas fermentation system.

Water Res

December 2024

Australian Centre for Water and Environmental Biotechnology, The University of Queensland, St Lucia, Brisbane, QLD 4072, Australia. Electronic address:

As a greenhouse gas, massive carbon dioxide (CO) has been generated due to organic matter degradation in wastewater treatment processes. Microbial gas fermentation offers a promising approach to capture CO and generate various valuable chemicals. However, limited studies have achieved branched or medium-chain fatty acids production via gas fermentation.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!