Background And Aims: Enhancing the zinc (Zn) concentration in wheat (Triticum aestivum) grain is a breeding objective in order to improve human Zn nutrition. At enhanced plant Zn uptake, grain Zn levels do not increase proportionally and within the grain the endosperm Zn levels remain below grain Zn levels. This study analysed the temporal dynamics of Zn concentrations in grain tissues during grain filling to find major bottlenecks.

Methods: Plants of two cultivars were grown at 1 and 5 mg Zn kg(-1) soil. Individual panicles were harvested 7, 14, 24 or 34 d after their flowering or at maturity and seeds were dissected into constituting tissues, which were analysed for Zn and other minerals.

Key Results: The Zn concentration of the crease was found to increase five- to nine-fold between 7 and 34 d after anthesis, while that of the endosperm decreased by 7 and 45 % when grown at 1 or 5 mg Zn kg(-1), respectively. The Zn turnover rate (d(-1)) in the crease tissues was either independent of the Zn application level or higher at the lower Zn application level, and the Zn concentration increased in the crease tissues with time during grain filling while the turnover rate gradually decreased.

Conclusions: There is significant within-seed control over Zn entering the seed endosperm. While the seed crease Zn concentration can be raised to very high levels by increasing external Zn supply, the endosperm Zn concentrations will not increase correspondingly. The limited transfer of Zn beyond the crease requires more research to provide further insight into the rate-determining processes and their location along the pathway from crease to the deeper endosperm.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3080623PMC
http://dx.doi.org/10.1093/aob/mcr040DOI Listing

Publication Analysis

Top Keywords

temporal dynamics
8
grain
8
grain levels
8
grain filling
8
grown kg-1
8
turnover rate
8
crease tissues
8
application level
8
crease
6
endosperm
5

Similar Publications

Exploring drought dynamics has become urgent due to unprecedented climate change. Projections indicate that drought events will become increasingly widespread globally, posing a significant threat to the sustainability of the agricultural sector. This growing challenge has resulted in heightened interest in understanding drought dynamics and their impacts on agriculture.

View Article and Find Full Text PDF

Population Dynamics of the Exotic Flatworm in an Invaded Garden.

Ecol Evol

January 2025

Univ Paris-Est Créteil, Sorbonne Université, Université Paris-Cité, CNRS, IRD, INRAE Institute of Ecology and Environmental Science, IEES Créteil France.

Population dynamics and the way abundance fluctuates over time may be key determinants of the invasion success of an introduced species. Fine-scale temporal monitoring of invasive species is rarely carried out due to the difficulties in collecting data regularly and over a long period. Thanks to the collaboration of an amateur naturalist, a unique dataset on the abundance of the invasive land flatworm was obtained during a 4-year survey of a French private garden, where up to 1585 were recorded in 1 month.

View Article and Find Full Text PDF

Introduction: Accurately assessing temporal order of cognitive decline across multiple domains is critical in Alzheimer's disease (AD). Existing literature presented controversial conclusions likely due to the use of a single cohort and different analytical strategies.

Methods: Harmonized composite cognitive measures in memory, language and executive functions from 13 cohorts in the ADSP-PHC data are used.

View Article and Find Full Text PDF

Acetylcholine modulates the network physiology of the hippocampus, a crucial brain structure that supports cognition and memory formation in mammals . In this and adjacent regions, synchronized neuronal activity within theta-band oscillations (4-10Hz) is correlated with attentive processing that leads to successful memory encoding . Acetylcholine facilitates the hippocampus entering a theta oscillatory regime and modulates the temporal organization of activity within theta oscillations .

View Article and Find Full Text PDF

Neuronal subtypes derived from the embryonic hypothalamus and prethalamus regulate many essential physiological processes, yet the gene regulatory networks controlling their development remain poorly understood. Using single-cell RNA- and ATAC-sequencing, we analyzed mouse hypothalamic and prethalamic development from embryonic day 11 to postnatal day 8, profiling 660,000 cells in total. This identified key transcriptional and chromatin dynamics driving regionalization, neurogenesis, and differentiation.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!