The bioactive signaling molecule D-erythro-sphingosine-1-phosphate (S1P) is irreversibly degraded by the enzyme S1P lyase (SPL). The reaction of SPL with C18-S1P generates ethanolamine phosphate and a long-chain fatty aldehyde, trans-2-hexadecenal. Modulation of SPL expression in cells and organisms produces significant phenotypes, most of which have been attributed to corresponding changes in S1P-dependent signaling. However, the physiological functions of SPL products are not well understood. In the present study, we explored the biological activities of trans-2-hexadecenal in human and murine cells. We demonstrate that trans-2-hexadecenal causes cytoskeletal reorganization leading to cell rounding, detachment and eventual cell death by apoptosis in multiple cell types, including HEK293T, NIH3T3 and HeLa cells. Trans-2-hexadecenal stimulated a signaling pathway involving MLK3 and the respective phosphorylation of MKK4/7 and JNK, whereas ERK, AKT and p38 were unaffected. Trans-2-hexadecenal-induced apoptosis was accompanied by activation of downstream targets of JNK including c-Jun phosphorylation, cytochrome c release, Bax activation, Bid cleavage and increased translocation of Bim into mitochondria. The antioxidant N-acetylcysteine prevented JNK activation by trans-2-hexadecenal. Further, inhibition of JNK abrogated the cytoskeletal changes and apoptosis caused by trans-2-hexadecenal, whereas Rac1 and RhoA were not involved. In conclusion, our studies provide a new paradigm of sphingolipid signaling by demonstrating for the first time that S1P metabolism generates a bioactive product that induces cellular effects through oxidant stress-dependent MAP kinase cell signaling.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3086202PMC
http://dx.doi.org/10.1016/j.cellsig.2011.02.009DOI Listing

Publication Analysis

Top Keywords

cytoskeletal reorganization
8
trans-2-hexadecenal
7
signaling
5
sphingolipid degradation
4
degradation product
4
product trans-2-hexadecenal
4
trans-2-hexadecenal induces
4
induces cytoskeletal
4
apoptosis
4
reorganization apoptosis
4

Similar Publications

Ligand binding to EGFR activates Rho family GTPases, triggering actin cytoskeleton reorganization, cell migration and invasion. Activated EGFR is also rapidly endocytosed but the role of EGFR endocytosis in cell motility is poorly understood. Hence, we used live-cell microscopy imaging to demonstrate that endogenous fluorescently labeled VAV2, a guanine nucleotide exchange factor for Rho GTPases, is co-endocytosed with EGFR in genome-edited human oral squamous cell carcinoma (HSC3) cells, an in vitro model for head-and-neck cancer where VAV2 is known to promote metastasis and associates with poor prognosis.

View Article and Find Full Text PDF

Deciphering the interactome of Ataxin-2 and TDP-43 in iPSC-derived neurons for potential ALS targets.

PLoS One

December 2024

Neuroscience, Merck Research Laboratories, Merck & Co., Inc., Rahway, New Jersey, United States of America.

Ataxin-2 is a protein containing a polyQ extension and intermediate length of polyQ extensions increases the risk of Amyotrophic Lateral Sclerosis (ALS). Down-regulation of Ataxin-2 has been shown to mitigate TDP-43 proteinopathy in ALS models. To identify alternative therapeutic targets that can mitigate TDP-43 toxicity, we examined the interaction between Ataxin-2 and TDP-43.

View Article and Find Full Text PDF

Introduction: The use of cardiopulmonary bypass (CPB) can induce sterile systemic inflammation that contributes to morbidity and mortality, especially in children. Patients have been found to have increased expression of cytokines and transmigration of leukocytes during and after CPB. Previous work has demonstrated that the supraphysiologic shear stresses existing during CPB are sufficient to induce proinflammatory behavior in non-adherent monocytes.

View Article and Find Full Text PDF

The functions of actin and its motor proteins myosins in the cytoplasm have been the subject of research for more than 100 years, but the existence and function of these proteins in the nucleus has been a matter of debate until recently. Recent data has clarified the role of actin and myosin molecules in controlling the dynamics of processes in the cell nucleus, chromatin organization and genome integrity. New microscopy techniques and the use of modified actin-binding probes have made it possible for the first time to directly visualize the polymerization of actin filaments in the nucleus of living cells.

View Article and Find Full Text PDF

Increased perfluorooctanoic acid accumulation facilitates the migration and invasion of lung cancer cells via remodeling cell mechanics.

Proc Natl Acad Sci U S A

December 2024

New Cornerstone Science Laboratory, Chinese Academy of Sciences Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety and Chinese Academy of Sciences Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, China.

Perfluoroalkyl and polyfluoroalkyl substances (PFAS) are widely used in industrial and household products, raising serious concerns due to their environmental persistence and mobility. Epidemiological studies have reported potential carcinogenic risks of PFAS based on their widespread occurrence and population exposure. In this study, we observed that perfluorooctanoic acid (PFOA), a common PFAS, functions as a mechanical regulator in lung cancer cells.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!